Download full-text PDF

Source

Publication Analysis

Top Keywords

[influence polymers
4
polymers fermentation
4
fermentation "penicillium
4
"penicillium chrysogenum"]
4
[influence
1
fermentation
1
"penicillium
1
chrysogenum"]
1

Similar Publications

Recent advances in bacterial outer membrane vesicles: Effects on the immune system, mechanisms and their usage for tumor treatment.

J Pharm Anal

December 2024

Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.

Tumor treatment remains a significant medical challenge, with many traditional therapies causing notable side effects. Recent research has led to the development of immunotherapy, which offers numerous advantages. Bacteria inherently possess motility, allowing them to preferentially colonize tumors and modulate the tumor immune microenvironment, thus influencing the efficacy of immunotherapy.

View Article and Find Full Text PDF

In this work, laponite (LAP) was used to develop the silver (Ag) based nanocomposite for improved anti-bacterial action and wound healing properties. The amphiphilic co-polymers such as PLGA polymer was embedded with the surface of LAP molecules and polyethyleneimine (PEI) through the interaction of hydrophobic binding and it was formed as LAP/PLA-PEG/PEI formulation through the coupling chemistry. The Ag nanoparticles was loaded into formulation to develop LAP/PLA-PEG/PEI/Ag nanocomposite and characterized by different analytical techniques.

View Article and Find Full Text PDF

Capturing the micro-communities: Insights into biogenesis and architecture of bacterial biofilms.

BBA Adv

December 2024

Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India.

Biofilm is an assemblage of microorganisms embedded within the extracellular matrix that provides mechanical stability, nutrient absorption, antimicrobial resistance, cell-cell interactions, and defence against host immune system. Various biomolecules such as lipids, carbohydrates, protein polymers (amyloid), and eDNA are present in the matrix playing significant role in determining the distinctive properties of biofilm. The formation of biofilms contributes to resistance against antimicrobial therapy in most of the human infections and exacerbates existing diseases.

View Article and Find Full Text PDF

Novel AIE-Active Polyarylethersulfone Polymers Incorporating Tetraphenylethene for Enhanced Fluorescence.

Macromol Rapid Commun

January 2025

College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China.

Aggregation-induced emission (AIE) materials have gained significant attention for their unique fluorescence enhancement in the aggregated state. However, combining rigid polymers with AIE molecules to enhance luminescent properties remains to be investigated. In this work, two novel AIE-active polyarylethersulfone (PAES) derivatives are synthesized by incorporating tetraphenylethene (TPE) into either the side chain or main chain of PAES, resulting in side-chain polyarylethersulfone-tetraphenylethene (PAES-TPE) and main-chain polyarylethersulfone-tetraphenylethene (m-PAES-TPE), respectively.

View Article and Find Full Text PDF

Mass production of biomedical microrobots demands expensive and complex preparation techniques and versatile biocompatible materials. Learning from natural bacteria flagella, the study demonstrates a magnetic polymer multilayer cylindrical microrobot that bestows the controllable propulsion upon an external rotating magnetic field with uniform intensity. The magnetic microrobots are constructed by template-assisted layer-by-layer technique and subsequent functionalization of magnetic particles onto the large opening of the microrobots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!