Download full-text PDF

Source
http://dx.doi.org/10.1016/0926-6569(64)90275-5DOI Listing

Publication Analysis

Top Keywords

chemical reactivity
4
reactivity thiol
4
thiol group
4
group active
4
active centre
4
centre ficin
4
chemical
1
thiol
1
group
1
active
1

Similar Publications

Investigation the CMP process of 6 H-SiC in HO solution with ReaxFF molecular dynamics simulation.

Sci Rep

January 2025

College of Mechanical Engineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, Zhejiang Province, China.

To observe the chemical mechanical polishing (CMP) process at the atomic scale, reactive force field molecular dynamics (ReaxFF-MD) was employed to simulate the polishing of 6 H-SiC under three conditions: dry, pure water, and HO solution. This study examined the reactants on the surface of 6 H-SiC during the reaction in the HO solution, along with the dissociation and adsorption processes of HO and water molecules. The mechanisms for atom removal during the CMP process were elucidated.

View Article and Find Full Text PDF

Inhibition of HDAC6 elicits anticancer effects on head and neck cancer cells through Sp1/SOD3/MKP1 signaling axis to downregulate ERK phosphorylation.

Cell Signal

January 2025

Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea. Electronic address:

Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression.

View Article and Find Full Text PDF

Transformation mechanism, kinetics and ecotoxicity of kaempferol and quercetin in the gaseous and aqueous phases: A theoretical combined experimental study.

Sci Total Environ

January 2025

Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China.

The transformation and risk assessment of flavonoids triggered by free radicals deserve extensive attention. In this work, the degradation mechanisms, kinetics, and ecotoxicity of kaempferol and quercetin mediated by ∙OH, ∙OCH, ∙OOH, and O in gaseous and aqueous environments were investigated using cell experiments and quantum chemical calculations. Three radical scavenging mechanisms, including hydrogen atom transfer (HAT), radical adduct formation (RAF) and single electron transfer (SET) were discussed.

View Article and Find Full Text PDF

Ammonia is a highly promising carbon-neutral fuel. The use of ammonia as a fuel for internal combustion engines can reduce fossil energy consumption and greenhouse gas emissions. However, the high ignition energy required for ammonia and the slow flame propagation rate result in low combustion efficiency when ammonia is used directly in internal combustion engines.

View Article and Find Full Text PDF

The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!