Heckly, Robert J. (University of California, Berkeley). Differentiation of exotoxin and other biologically active substances in Pseudomonas pseudomallei filtrates. J. Bacteriol. 88:1730-1736. 1964.-Denaturing agents such as phenol, formaldehyde, and urea reduced lethal toxicity and proteolytic activity of partially purified preparations from Pseudomonas pseudomallei at about the same rate. Neither toxin nor enzyme was stable at pH 11, when the solution was adjusted with sodium hydroxide, but there was a slight difference in their rates of inactivation. However, under certain conditions, ammonium hydroxide destroyed most of the enzymatic activity with only a slight effect on lethality. Conversely, toxin was less stable in acid solutions than was the enzyme. Thus, treatment with ammonium hydroxide or acetic acid yielded preparations with either a low or a high enzyme-to-toxin ratio, indicating that lethality was not dependent on enzyme activity. Although proteolysis of any one of the essential factors in the blood coagulation system can inhibit clotting of blood, the potent anticoagulant activity of culture filtrates was not associated with its proteolytic activity, but was directly correlated with lethal toxicity. It is of considerable interest that the necrotoxicity was, however, associated with enzymatic activity and not with lethality. Serological reactivity of the enzyme, as well as its proteolytic activity, was altered by ammonium hydroxide. Similarly, antigenicity and toxicity of the lethal toxin were reduced by acidification. Each acid- or alkali-treated preparation produced a single precipitin line in double diffusion in agar when reacted with antisera produced by injection of crude filtrate. Partially purified preparations, having both lethal and enzymatic activity, produced two lines, one identifiable with the enzyme preparation, and one with the toxin. Furthermore, specific precipitation with the respective antisera removed either enzyme or toxin from crude preparations. Therefore, the lethal exotoxin and proteolytic enzyme are separable entities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC277479 | PMC |
http://dx.doi.org/10.1128/jb.88.6.1730-1736.1964 | DOI Listing |
BMC Microbiol
January 2025
Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-0818, Japan.
Background: Glanders and melioidosis are contagious zoonotic diseases caused by Burkholderia mallei and B. pseudomallei, respectively. Bacterial isolation and polymerase chain reaction (PCR) have been used to detect these bacteria in animals suspected of infection; however, both methods require skilled experimental techniques and expensive equipment.
View Article and Find Full Text PDFMalays J Med Sci
December 2024
Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kelantan, Malaysia.
Melioidosis is a life-threatening infectious disease caused by the bacterium . Although culture is the gold standard for diagnosing melioidosis, it is time-consuming and delays timely treatment. Non-culture-based diagnostic techniques are interesting alternatives for the rapid detection of melioidosis.
View Article and Find Full Text PDFAm J Trop Med Hyg
January 2025
Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.
Melioidosis is a neglected tropical infection caused by the Gram-negative bacterium Burkholderia pseudomallei, which is found in soil and water across tropical countries. The infection spectrum ranges from mild localized lesions to severe sepsis. The clinical presentation, severity, and outcome are influenced by the route of infection, bacterial load, strain virulence, and specific virulence genes of B.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines.
Burkholderia pseudomallei (Bp), causing melioidosis, is becoming a major global public health concern. It is highly endemic in Southeast Asia (SEA) and Northern Australia and is persisting beyond the established areas of endemicity. This study aimed to determine the environmental variables that would predict the most suitable ecological niche for this pathogenic bacterium in SEA by maximum entropy (MaxEnt) modeling.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Hemolysin co-regulated protein 1 (Hcp1) is a component of the cluster 1 Type VI secretion system (T6SS1) that plays a key role during the intracellular lifecycle of Burkholderia pseudomallei. Hcp1 is recognized as a promising target antigen for developing melioidosis diagnostics and vaccines. While the gene encoding Hcp1 is retained across B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!