The properties and localization of ATPase system in nuclei of skeletal muscle of normal rabbit and of those with experimental muscle dystrophy were studied by electron cytochemistry. The product of cytochemical reaction of ATP hydrolysis, which is a marker of ATPase activity localization in nuclear ultrastructures, was detected on the nuclear membrane, in chromatin and in the nucleolus, ATPase activity in the nuclei was detected in the presence of both, Mg2+ and Ca2+. Addition to the incubation medium, originally containing Mg2+, Na+ and K+, resulted in an increased formation of the product reaction in all the nuclear ultrastructures in both in the norm and under experimental muscle dystrophy. However, specific inhibitor of Mg2+, Na+, K+-ATPase--ouabain--suggests the absence in the nuclei of skeletal muscles of rabbit of transport ATPase working in the "Na-pump" system. The results of experiments with a specific complex of Ca2+--EGTA allow to suppose that Mg2+, Ca2+-ATPase of skeletal muscle nuclei of normal rabbits is localized in the nucleoplasm, whereas Mg2+-ATPase is found on the nuclear membrane. Using EGTA we failed to detected the localization of Mg2+, Ca2+-ATPase in nuclear ultrastructures upon experimental muscular dystrophy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

skeletal muscle
12
nuclear ultrastructures
12
muscle normal
8
experimental muscular
8
nuclei skeletal
8
experimental muscle
8
muscle dystrophy
8
atpase activity
8
nuclear membrane
8
mg2+ na+
8

Similar Publications

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Background: Herein, we aimed to examine the relationship between sarcopenia, neutrophil-lymphocyte ratio (NLR), Charlson comorbidity index (CCI), and prognostic nutritional index (PNI) in patients with superficial esophageal carcinoma who underwent definitive chemoradiotherapy (CRT).

Methods: We retrospectively analyzed 100 patients (87 males) diagnosed with cT1N0M0 esophageal squamous cell carcinoma. The included patients underwent CRT as an initial treatment.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are non-canonical secondary nucleic acid structures found in the transcriptome. They play crucial roles in gene regulation by interacting with G4-binding proteins (G4BPs) in cells. rG4-G4BP complexes have been associated with human diseases, making them important targets for drug development.

View Article and Find Full Text PDF

Selective Neurectomy with Regenerative Peripheral Nerve Interface Surgery for Facial Synkinesis.

Facial Plast Surg Aesthet Med

January 2025

Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA.

Selective neurectomy (SN) typically leaves cut nerve endings to be either free-floating or buried in facial muscles. Regenerative peripheral nerve interfaces (RPNIs) use autologous skeletal muscle grafts to provide a nonfacial muscle target for reinnervation. To evaluate the effectiveness of RPNI surgery with SN for improving postoperative facial function through botulinum toxin use and facial movement metrics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!