AI Article Synopsis

Article Abstract

In acute experiments on 21 cats it was proved that the change of afferent impulse on vagus nerves by means of either freeze-block or electrostimulation of their central ends results in differential reflex influences on rhythm and force of the cardiac contractions caused by sympathetic nervous system. The cut of the lower cardiac nerves may cause 'break-up' of the observed reflex, removing or inverting its ino- or chronotropy component. The given phenomenon was revealed in the experiments with high arterial pressure and with absence of tonic chronotropy influences of the left lower cardiac nerve.

Download full-text PDF

Source

Publication Analysis

Top Keywords

force cardiac
8
lower cardiac
8
[organization reflex
4
reflex sympathetic
4
sympathetic influence
4
influence rate
4
rate force
4
cardiac
4
cardiac contraction]
4
contraction] acute
4

Similar Publications

Background: Recent research has revealed the potential value of machine learning (ML) models in improving prognostic prediction for patients with trauma. ML can enhance predictions and identify which factors contribute the most to posttraumatic mortality. However, no studies have explored the risk factors, complications, and risk prediction of preoperative and postoperative traumatic coagulopathy (PPTIC) in patients with trauma.

View Article and Find Full Text PDF

Phosphate rebinding induces force reversal via slow backward cycling of cross-bridges.

Front Physiol

January 2025

Institute of Vegetative Physiology, University of Cologne, Köln, Germany.

Objective: Previous studies on muscle fibers, myofibrils, and myosin revealed that the release of inorganic phosphate (P) and the force-generating step(s) are reversible, with cross-bridges also cycling backward through these steps by reversing force-generating steps and rebinding P. The aim was to explore the significance of force redevelopment kinetics (rate constant ) in cardiac myofibrils for the coupling between the P binding induced force reversal and the rate-limiting transition for backward cycling of cross-bridges from force-generating to non-force-generating states.

Methods: and force generation of cardiac myofibrils from guinea pigs were investigated at 0.

View Article and Find Full Text PDF

Objective: Carotid artery stenosis, primarily caused by atherosclerosis, is a major risk factor for ischemic stroke. Carotid endarterectomy (CEA) and carotid artery stenting (CAS) are established interventions to reduce stroke risk and restore cerebral blood flow. However, the effect of these treatments on circadian rhythms, and their influence on stroke recovery, remains underexplored.

View Article and Find Full Text PDF

The study was designed to investigate the pattern of intraventricular Hemo-Dynamic Forces (HDF) and myocardial performance during exercise in Elite Cyclists (EC). Transthoracic stress echocardiography was performed on nineteen EC and thirteen age-matched sedentary controls (SC) at three incremental exercise intensities based on Heart Rate Reserve (HRR). Left Ventricular (LV) HDF were computed from echocardiography long-axis data sets using a novel technique based on endocardial boundary tracking, both in apex-base and latero-septal directions.

View Article and Find Full Text PDF

Mechanical forces continuously provide feedback to heart valve morphogenetic programs. In zebrafish, cardiac valve development relies on heart contraction and physical stimuli generated by the beating heart. Intracardiac hemodynamics, driven by blood flow, emerge as fundamental information shaping the development of the embryonic heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!