Electrical stimulation of cardiac cells by imposed extracellular electric fields results in a transmembrane potential which is highly nonuniform, with one end of the cell depolarized and the other end hyperpolarized along the field direction. To date, the implications of the close proximity of oppositely polarized membranes on excitability have not been explored. In this work we compare the biophysical basis for field stimulation of cells at rest with that for intracellular current injection, using three Luo-Rudy type membrane patches coupled together as a lumped model to represent the cell membrane. Our model shows that cell excitation is a function of the temporal and spatial distribution of ionic currents and transmembrane potential. The extracellular and intracellular forms of stimulation were compared in greater detail for monophasic and symmetric biphasic rectangular pulses, with duration ranging from 0.5 to 10 ms. Strength-duration curves derived for field stimulation show that over a wide range of pulse durations, biphasic waveforms can recruit and activate membrane patches about as effectively as can monophasic waveforms having the same total pulse duration. We find that excitation with biphasic stimulation results from a synergistic, temporal summation of inward currents through the sodium channel in membrane patches at opposite ends of the cell. Furthermore, with both waveform types, a net inward current through the inwardly rectifying potassium channel contributes to initial membrane depolarization. In contrast, models of stimulation by intracellular current injection do not account for the nonuniformity of transmembrane potential and produce substantially different (even contradictory) results for the case of stimulation from rest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1262161 | PMC |
http://dx.doi.org/10.1016/S0006-3495(92)81632-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!