Biliverdins with extended conformations are reduced by biliverdin reductase (BvR) at higher rates than biliverdins with helical conformations. To find out the molecular basis for this important feature of BvR mechanism, helical and extended biliverdins were titrated for their acid-base equilibria in a protic solvent (methanol). It was found that the basicity of biliverdins increases with the stretching of the conformation. Biliverdin IX gamma (all-syn) has a pKa = 3.6; 5,10,15-syn,syn,anti-biliverdin has a pKa = 3.7; 5,10,15-syn,anti,syn-biliverdin has a pKa = 6.1; 5,10,15-syn,anti,anti-biliverdin has a pKa = 6.4; and 5,10,15-all-anti-biliverdin has a pKa = 7.9. The increase in basicity with progressive stretching of conformations closely parallels the increase in the reduction rates by BvR. A biliverdin constrained by a four carbon chain to a helical conformation and which is a very weak base (pKa = 0.4) is not reduced by BvR. Nucleophilic additions of 2-mercaptoethanol at the C10 in biliverdins closely parallel their basicities, as can be expected if the formation of a positive mesomeric species at C10 is linked to the basicity (i.e., the ease of protonation) of the N23 on the pyrrolenine ring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-291x(92)92348-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!