Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC300089PMC
http://dx.doi.org/10.1073/pnas.51.3.428DOI Listing

Publication Analysis

Top Keywords

electrochemical precipitation
4
precipitation human
4
human blood
4
blood cells
4
cells relation
4
relation intravascular
4
intravascular thrombosis
4
electrochemical
1
human
1
blood
1

Similar Publications

Fluorine-free organic framework polyelectrolyte membranes showing near frictionless ionic conductivities are gaining cognitive insights. However, the co-precipitation of COFs in the membranes often brings trade-offs to commission long-life electrochemical energy storage solutions. Herein, a durable and ionically miscible dual-ion exchange membrane based on triazine organic framework (TOF) is designed for alkaline redox flow batteries (RFB).

View Article and Find Full Text PDF

Electrochemical CO reduction in acidic media attracts extensive research attention due to its potential in increasing carbon efficiency. In most reports, alkali cations are introduced to suppress hydrogen evolution and to promote CO reduction. However, the mass transport of alkali cations through cation exchange membrane induces the change of electrolyte compositions.

View Article and Find Full Text PDF

The widespread use of gadolinium-based contrast agents for magnetic resonance imaging (MRI) in recent decades has led to a growing demand for Gd and raised environmental concerns due to their direct discharge into wastewater systems. In response, we developed an electrochemical filtration method to recover Gd from patient urine following contrast-enhanced MRI. This method involves modifying a conventional vacuum filtration apparatus by introducing electrodes into the filter membrane, creating a strong electric field of ∼5 kV/m and a steep three-zone pH gradient within the filter membrane.

View Article and Find Full Text PDF

Template-free synthesis of a multilayer manganese oxide/graphene oxide nanoflake-modified carbon felt as an anode material for microbial fuel cells.

RSC Adv

January 2025

CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China.

A novel multilayer nanoflake structure of manganese oxide/graphene oxide (γ-MnO/GO) was fabricated a simple template-free chemical precipitation method, and the modified carbon felt (CF) electrode with γ-MnO/GO composite was used as an anode material for microbial fuel cells (MFCs). The characterization results revealed that the γ-MnO/GO composite has a novel multilayer nanoflake structure and offers a large specific surface area for bacterial adhesion. The electrochemical analyses demonstrated that the γ-MnO/GO composite exhibited excellent electrocatalytic activity and enhanced the electrochemical reaction rate and reduced the electron transfer resistance, consequently facilitating extracellular electron transfer (EET) between the anode and bacteria.

View Article and Find Full Text PDF

The electrochemical carbon dioxide reduction reaction (CORR) using renewable electricity sources could provide a sustainable solution for generating valuable chemicals, such as formate salt or formic acid. However, an efficient, stable, and scalable electrode generating formate at industrially viable current densities (>100 mA cm) is yet to be developed. Sn or In-based catalysts in gas diffusion electrodes (GDE) can efficiently produce formate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!