Download full-text PDF |
Source |
---|
Phys Rev Lett
December 2024
Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
The transverse-momentum-dependent distributions (TMDs), which are defined by gauge-invariant 3D parton correlators with staple-shaped lightlike Wilson lines, can be calculated from quark and gluon correlators fixed in the Coulomb gauge on a Euclidean lattice. These quantities can be expressed gauge invariantly as the correlators of Coulomb-gauge-dressed fields, which reduce to the standard TMD correlators under principal-value prescription in the infinite boost limit. In the framework of large-momentum effective theory, a quasi-TMD defined from such correlators in a large-momentum hadron state can be matched to the TMD via a factorization formula, whose exact form is derived using soft collinear effective theory and verified at one-loop order.
View Article and Find Full Text PDFInt J Surg Case Rep
January 2025
Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
Introduction: Pancreatoduodenectomy (PD) is a complex procedure with a high morbidity rate. Internal hernia following PD is a rare but potentially life-threatening complication. Herein, we describe a rare case of internal hernia after PD.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Division of Material Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
Rare-earth-transition-metal (RE-TM) ferrimagnets are excellent materials for spin encode/decode operations via spin transport in nonmagnetic regions. This superior performance stems from two key factors. First, the antiferromagnetic coupling between RE4f and TM3d sublattices reduces both the spin-transfer-torque switching time and inter-device magnetic-coupling.
View Article and Find Full Text PDFJ Biomech
December 2024
Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA. Electronic address:
While rat models are frequently used to study tendon healing, there is a lack of research comparing various rotator cuff repair methods in this animal model. Determining the most effective method to begin with is pivotal for biological studies focused on healing augmentation. No study to date has shown the superiority of one repair over the other for rotator cuff repair in a rat model.
View Article and Find Full Text PDFCureus
October 2024
Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!