AI Article Synopsis

Article Abstract

The present study investigated whether stimulation of the GABAergic system affects spatial navigation [water-maze (WM)] deficit induced by muscarinic blockade (scopolamine). The effects of various doses of gamma-vinyl-GABA (GVG) (50, 150, and 300 mg/kg) and scopolamine (0.4 and 0.1 mg/kg) were examined alone and in combination. GVG at 50 and 150 mg/kg alone did not impair the performance of rats in the WM yask. At 300 mg/kg, GVG caused slight impairment, increasing latency and total distance swim during training trials. Scopolamine at 0.4 mg/kg clearly impaired the performance of rats in the WM task. When the two drugs were coadministered, no interaction between scopolamine and GVG was observed. Our results do not provide support for any interaction between cholinergic muscarinic and GABAergic mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0091-3057(92)90643-tDOI Listing

Publication Analysis

Top Keywords

spatial navigation
8
deficit induced
8
induced muscarinic
8
muscarinic blockade
8
gvg 150
8
300 mg/kg
8
scopolamine mg/kg
8
performance rats
8
mg/kg
5
effects inhibitor
4

Similar Publications

Percutaneous transthoracic puncture of small pulmonary nodules is technically challenging. We developed a novel electromagnetic navigation puncture system for the puncture of sub-centimeter lung nodules by combining multiple deep learning models with electromagnetic and spatial localization technologies. We compared the performance of DL-EMNS and conventional CT-guided methods in percutaneous lung punctures using phantom and animal models.

View Article and Find Full Text PDF

Navigating uncertainty is crucial for survival, with the location and availability of reward varying in different and unsignalled ways. Hippocampal place cell populations over-represent salient locations in an animal's environment, including those associated with rewards; however, how the spatial uncertainties impact the cognitive map is unclear. We report a virtual spatial navigation task designed to test the impact of different levels and types of uncertainty about reward on place cell populations.

View Article and Find Full Text PDF

Unlabelled: Adaptive behavior in complex environments requires integrating visual perception with memory of our spatial environment. Recent work has implicated three brain areas in posterior cerebral cortex - the place memory areas (PMAs) that are anterior to the three visual scene perception areas (SPAs) - in this function. However, PMAs' relationship to the broader cortical hierarchy remains unclear due to limited group-level characterization.

View Article and Find Full Text PDF

Tracking and Navigation Technologies for Image-Guided Trans-Arterial Interventions.

Tech Vasc Interv Radiol

December 2024

Department of Radiology, Mayo Clinic, Phoenix, AZ. Electronic address:

Trans-arterial interventions are an increasingly utilized approach for diagnosing and treating a wide range of pathologies, providing superior patient outcomes compared to traditional open surgical methods. Recent advancements in tracking and navigation technologies have significantly refined these interventions, enhancing procedural precision and success. Advanced imaging modalities, such as fluoroscopy, cone beam computed tomography (CBCT), and intravascular ultrasound (IVUS), are frequently used strategies offering critical real-time guidance.

View Article and Find Full Text PDF

During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!