A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocyte precursors, triggering apoptosis and clonogenic cell death. | LitMetric

Very little is known regarding the effects of ionizing radiation on cytoplasmic signal transduction pathways. Here, we show that ionizing radiation induces enhanced tyrosine phosphorylation of multiple substrates in human B-lymphocyte precursors. This response to ionizing radiation was also observed in cells pretreated with vanadate, a potent protein-tyrosine-phosphatase (PTPase) inhibitor, and phosphotyrosyl [Val5]angiotensin II phosphatase assays showed no decreased PTPase activity in irradiated cells. Thus, enhanced tyrosine phosphorylation in irradiated B-lymphocyte precursors is not triggered by inhibition of total cellular PTPase activity. Immune-complex kinase assays using anti-phosphotyrosine antibodies demonstrated enhanced protein-tyrosine kinase (PTK) activity in the immunoprecipitates from irradiated cells, and the PTK inhibitors genistein and herbimycin effectively prevented radiation-induced tyrosine phosphorylation. Immune-complex kinase assays on irradiated and unirradiated B-lymphocyte precursors using antibodies prepared against unique amino acid sequences of p59fyn, p56/p53lyn, p55blk, and p56lck demonstrated that these Src-family tyrosine kinases were not the primary PTKs responsible for enhanced tyrosine kinase activity in the anti-phosphotyrosine antibody immunoprecipitates or for enhanced tyrosine phosphorylation of multiple substrates. Thus, our findings favor the hypothesis that ionizing radiation induces enhanced tyrosine phosphorylation in B-lymphocyte precursors by stimulation of as yet unidentified PTKs. Tyrosine phosphorylation appears to be an important proximal step in radiation-induced apoptosis and clonogenic cell death because inhibition of PTK prevents DNA fragmentation and loss of clonogenicity of irradiated B-lymphocyte precursors. Since PTKs play myriad roles in the regulation of cell function and proliferation, the activation of a PTK cascade, as detailed in this report, may explain some of the pleiotropic effects of ionizing radiation on cellular functions of B-lymphocytes and their precursors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC50053PMC
http://dx.doi.org/10.1073/pnas.89.19.9005DOI Listing

Publication Analysis

Top Keywords

ionizing radiation
24
b-lymphocyte precursors
24
tyrosine phosphorylation
24
enhanced tyrosine
20
human b-lymphocyte
8
apoptosis clonogenic
8
clonogenic cell
8
cell death
8
effects ionizing
8
radiation induces
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!