The effects of epidermal growth factor on high density primary cultures of fetal (embryonic day 17) rat septal cells were examined. Under serum-free conditions, the continuous exposure of these cultures to epidermal growth factor for seven days significantly decreased choline acetyltransferase (EC 2.3.1.6) activity in a dose-dependent manner. Maximal decreases were observed from 1 to 10 ng/ml epidermal growth factor. This effect was completely abolished by the addition of anti-epidermal growth factor antibodies. The epidermal growth factor-mediated decrease in choline acetyltransferase activity was culture-time dependent, being first detectable after five days of factor application and may likely represent an inhibition of the spontaneous increase in enzyme activity that occurs with time in culture. Concomitant with changes in enzyme activity, epidermal growth factor produced a significant and proportional decrease in the number of acetylcholinesterase-positive neurons. This decrease in acetylcholinesterase-positive cells did not reflect a decrease in cholinergic cell survival as nerve growth factor could restore the number of acetylcholinesterase-positive neurons in epidermal growth factor-treated cultures to control levels. Furthermore, in these high-density cultures, epidermal growth factor did not affect general neuronal survival, while it did produce an increase in the number and intensity of glial fibrillary acidic protein-immunoreactive astroglia as well as in the number of macrophage-like cells. The proliferative response of these non-neuronal cells to epidermal growth factor, as assessed by [3H]thymidine incorporation, was evident after three days of epidermal growth factor application, persisted thereafter, and could be antagonized by the inclusion of the antimitotic 5-fluorodeoxyuridine. Furthermore, 5-fluorodeoxyuridine completely blocked the epidermal growth factor-mediated decrease in choline acetyltransferase activity. However, when epidermal growth factor was tested in pure glial cultures, it only directly induced proliferation of astrocytes. These results suggest that the proliferative response of either one or both of these glial cell types in the mixed cultures may be indirectly affecting cholinergic cell expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0306-4522(92)90383-d | DOI Listing |
Clin Exp Optom
January 2025
Department of Ophthalmology, Dünyagöz Tunus Hospital, Ankara, Türkiye.
Clinical Relevance: Pseudoexfoliation syndrome (PXS) is a common age-related disorder associated with glaucoma and cataract. Despite its clinical importance, the pathogenesis of PXS is not yet fully understood.
Background: To evaluate levels of SCUBE-1 (signal peptide, CUB domain, and epidermal growth factor-like domain containing protein 1) in the serum and aqueous humour of patients with PXS in comparison with non-PXS controls.
Nat Genet
January 2025
Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Members of the KMT2C/D-KDM6A complex are recurrently mutated in urothelial carcinoma and in histologically normal urothelium. Here, using genetically engineered mouse models, we demonstrate that Kmt2c/d knockout in the urothelium led to impaired differentiation, augmented responses to growth and inflammatory stimuli and sensitization to oncogenic transformation by carcinogen and oncogenes. Mechanistically, KMT2D localized to active enhancers and CpG-poor promoters that preferentially regulate the urothelial lineage program and Kmt2c/d knockout led to diminished H3K4me1, H3K27ac and nascent RNA transcription at these sites, which leads to impaired differentiation.
View Article and Find Full Text PDFMetastatic triple-negative breast cancer has a poor prognosis and poses significant therapeutic challenges. Until recently, limited therapeutic options have been available for patients with advanced disease after failure of first-line chemotherapy. The aim of this review is to assess the current evidence supporting second-line treatment options in patients with metastatic triple-negative breast cancer.
View Article and Find Full Text PDFAnn Oncol
January 2025
David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. Electronic address:
Background: Osimertinib is the standard first-line treatment for advanced epidermal growth factor receptor (EGFR)-mutated NSCLC. However, treatment resistance is inevitable and increased c-Met protein expression correlates with resistance. Telisotuzumab vedotin (Teliso-V) is an antibody-drug conjugate that targets c-Met protein overexpression.
View Article and Find Full Text PDFCancer Treat Rev
January 2025
Division of Hematology and Oncology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA, United States. Electronic address:
Background: Trastuzumab deruxtecan (T-DXd) has shown promising activity in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) and central nervous system (CNS) involvement. In this updated meta-analysis, we explore the effectiveness of T-DXd in a large subset of patients with HER2-positive BC and CNS disease.
Methods: A systematic search was made on September 16th, 2024, for studies investigating T-DXd in the scenario of HER2-positive BC and brain metastases (BMs) and/or leptomeningeal disease (LMD).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!