The methanol-insoluble heat-stable enterotoxin of Escherichia coli (STB) was purified and characterized by automated Edman degradation and tryptic peptide analysis. The amino-terminal residue, Ser-24, confirmed that the first 23 amino acids inferred from the gene sequence were removed during translocation through the E. coli inner membrane. Tryptic peptide analysis coupled with automated Edman degradation revealed that disulphide bonds are formed between residues Cys-33 and Cys-71 and between Cys-44 and Cys-59. Oligonucleotide-directed mutagenesis performed on the STB gene demonstrated that disulphide bond formation does not precede translocation of the polypeptide through the inner membrane and that disulphide bridge formation is a periplasmic event; apparently, elimination of either of two disulphides of STB renders the molecule susceptible to periplasmic proteolysis. In addition, a loop defined by the Cys-44-Cys-59 bond contains at least two amino acids (Arg-52 and Asp-53) required for STB toxic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.1992.tb01414.x | DOI Listing |
Sci Transl Med
January 2025
University of Strasbourg, INSERM, Strasbourg Translational Neuroscience & Psychiatry STEP-CRBS, UMR-S 1329, 67000 Strasbourg, France.
Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic and mutation carriers exhibited increased wakefulness and reduced non-rapid eye movement sleep.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
Insect melanization triggered by the conversion of prophenoloxidase to active phenoloxidase via serine proteases (SPs) is an important immediate immune response. However, how phytoplasmas evade this immune response to promote their propagation in insect vectors remains unknown. Here, we demonstrate that infection of leafhopper vectors with rice orange leaf phytoplasma (ROLP) activates the mild melanization response in hemolymph.
View Article and Find Full Text PDFPLoS Genet
January 2025
Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America.
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Increased localization of several SAC proteins was found upon depolymerization of microtubules by colchicine.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!