Download full-text PDF |
Source |
---|
Cureus
December 2024
Neurology, Hassan II University Hospital, Fez, MAR.
Hirayama disease, also known as non-progressive juvenile spinal muscular atrophy of the upper limbs, brachial monomelic amyotrophy, or benign focal atrophy, affects the C7 D1 myotomes; an electromyogram (EMG) shows neurogenic damage in the C7-C8-T1 territories. It causes weakness and amyotrophy of the distal upper limb. Although it usually occurs on one side only, bilateral symmetric cases of Hirayama disease have occasionally been described.
View Article and Find Full Text PDFMusculoskeletal Care
March 2025
Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
Study Design: Retrospective cohort study.
Objective: Tackling delayed diagnosis in degenerative cervical myelopathy (DCM) is a global research priority. On average, it takes 2-5 years, leading to worse outcomes from surgery and greater disability.
Eur Spine J
January 2025
Aix-Marseille University, CNRS, CRMBM, Marseille, France.
Background And Purpose: Degenerative cervical myelopathy (DCM) is the most common cause of spinal cord (SC) dysfunction. In routine clinical practice, SC changes are well depicted using conventional MRI, especially T2-weighted imaging. However, this modality usually fails to provide satisfactory clinico-radiological correlations.
View Article and Find Full Text PDFActa Orthop
January 2025
Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
Background And Purpose: Degenerative cervical myelopathy (DCM) is the most common cause of spinal cord dysfunction in adults. Repeated follow-ups after surgery are resource consuming. The aim was to examine whether patient-reported outcome measures (PROMs) change after the first year.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland.
Background: With the approval of disease-modifying treatments for 5q-spinal muscular atrophy (SMA), there is an increasing need for biomarkers for disease course and therapeutic response monitoring. Radially sampled Averaged Magnetization Inversion Recovery Acquisitions (rAMIRA) MR-imaging enables spinal cord (SC) gray matter (GM) delineation and quantification in vivo. This study aims to assess SC GM atrophy in patients with 5q-SMA and its associations with clinical disability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!