Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-3002(63)90763-7DOI Listing

Publication Analysis

Top Keywords

metabolism lysolecithin
4
lysolecithin lecithin
4
lecithin yeast
4
yeast supernatant
4
metabolism
1
lecithin
1
yeast
1
supernatant
1

Similar Publications

LPCAT1, the Enzyme Responsible for Converting LPC to PC, Promotes OPC Differentiation In Vitro.

J Cell Mol Med

February 2025

Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of Education, Naval Medical University, Shanghai, China.

Myelin is the key structure for high-speed information transmission and is formed by oligodendrocytes (OLs) which are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system. Lipid is the main component of myelin and the role of lipid metabolism-related molecules in myelination attach increasing attention. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediates the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), and its role in myelination draws our interest as LPC is a classical demyelination inducer and PC is a major component of myelin.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

Purpose: A comprehensive analysis of metabolites (metabolomics) has been proposed as a new strategy for analyzing liquid biopsies and has been applied to identify biomarkers predicting clinical responses or adverse events associated with specific treatments. Here, we aimed to identify metabolites associated with bortezomib (Btz)-related toxicities and response to treatment in newly diagnosed multiple myeloma (MM).

Methods: Fifty-four plasma samples from transplant-ineligible MM patients enrolled in a randomized phase II study comparing two less-intensive regimens of melphalan, prednisolone and Btz (MPB) were subjected to the lipidomic profiling analysis.

View Article and Find Full Text PDF

Multi-omics analysis reveals toxicity and gut-liver axis disruption induced by polychlorinated biphenyls exposure in Yellowfin Seabream (Acanthopagrus latus).

J Hazard Mater

January 2025

School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China. Electronic address:

Polychlorinated biphenyls (PCBs) are persistent organic pollutants known for their environmental persistence and bioaccumulation, posing significant health risks. This study examines the toxic effects of a representative PCBs (Aroclor 1254) on yellowfin seabream (Acanthopagrus latus) exposured for 30 days through a multi-omics approach. Histopathological examinations revealed structural damage to the intestinal structure and hepatic steatosis, along with elevated serum lipopolysaccharide levels, indicating compromised intestinal barrier integrity and liver inflammation.

View Article and Find Full Text PDF

Background: Leptomeningeal metastasis (LM) is a devastating complication of cancer that is difficult to treat. Thus, early diagnosis is essential for LM patients. However, cerebrospinal fluid (CSF) cytology has low sensitivity, and imaging approaches are ineffective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!