Microdialysis probes with longer membranes (20-100 mm) provide increased relative recovery over traditional shorter probes (1-4 mm) developed for neuroscience applications. The characterization and optimization of "straight through" or "loop type" probes for use in subcutaneous tissue are considered. Membrane area, probe size, inlet and outlet tubing dimensions, and flow-rate are examined for their effects on relative recovery, the total collection rate, and bulk flow through the membrane wall. Polyacrylonitrile and regenerated cellulose membrane fibers with different geometries were compared. Sampling probes used fibers 3-10 cm long. Inlet and outlet tubing was varied from 25 to 110 microns I.D. with lengths of 10 to 50 cm. Probe configurations optimized for relative recovery, flow-rate, and utility for in vivo use are presented. Utilizing microdialysis probes with large membrane surface areas results in relative concentration recovery of greater than 50% at flow-rates of greater than 5 microliters/min. Therapeutic drug monitoring in subcutaneous tissue of awake animals is explored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0378-4347(92)80412-j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!