AI Article Synopsis

  • An enhanced electrophoretic molecular karyotype of Aspergillus nidulans ATCC 28901 was achieved, enabling the separation of seven chromosomal bands and better resolution of chromosomes III and VI.
  • The penicillin biosynthesis genes (pcbAB, pcbC, and penDE) are found clustered on chromosome VI, while the argB gene is positioned on chromosome III.
  • Some other A. nidulans strains have a modified chromosome III that partially overlaps with chromosome VI, allowing clear mapping of the penicillin gene cluster on chromosome VI of strain ATCC 28901.

Article Abstract

An improved electrophoretic molecular karyotype of Aspergillus nidulans ATCC 28901 has been obtained by contour-clamped electric field gel electrophoresis, which separates seven chromosomal bands and allows resolution of chromosomes III and VI. The three genes of the penicillin biosynthetic pathway, pcbAB, pcbC, and penDE, encoding alpha-aminoadipyl-cysteinyl-valine synthetase, isopenicillin N synthase, and isopenicillin N acyltransferase, respectively, are clustered together on a chromosome of 3.0 Mg, corresponding to linkage group VI, whereas the argB gene was located on a chromosome of 3.4 Mb, corresponding to linkage group III. Three other strains of A. nidulans contained a modified chromosome III of about 3.1 Mb that overlaps with chromosome VI, forming a doublet. Resolution of chromosomes III and VI in strain ATCC 28901 allowed unequivocal mapping of the penicillin gene cluster on chromosome VI of A. nidulans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC207390PMC
http://dx.doi.org/10.1128/jb.174.21.7063-7067.1992DOI Listing

Publication Analysis

Top Keywords

resolution chromosomes
12
chromosomes iii
12
aspergillus nidulans
8
gel electrophoresis
8
penicillin biosynthetic
8
biosynthetic pathway
8
pcbab pcbc
8
pcbc pende
8
clustered chromosome
8
atcc 28901
8

Similar Publications

Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.

View Article and Find Full Text PDF

Background: Disease-causing copy-number variants (CNVs) often encompass contiguous genes and can be detected using chromosomal microarray analysis (CMA). Conversely, CNVs affecting single disease-causing genes have historically been challenging to detect due to their small sizes.

Methods: A custom comprehensive CMA (Baylor College of Medicine - BCM v11.

View Article and Find Full Text PDF

Current temporal studies of DNA replication are either low-resolution or require complex cell synchronisation and/or sorting procedures. Here we introduce Nanotiming, a single-molecule, nanopore sequencing-based method producing high-resolution, telomere-to-telomere replication timing (RT) profiles of eukaryotic genomes by interrogating changes in intracellular dTTP concentration during S phase through competition with its analogue bromodeoxyuridine triphosphate (BrdUTP) for incorporation into replicating DNA. This solely demands the labelling of asynchronously growing cells with an innocuous dose of BrdU during one doubling time followed by BrdU quantification along nanopore reads.

View Article and Find Full Text PDF

The proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding.

View Article and Find Full Text PDF

Landraces are a critical genetic resource for resilience breeding, offering solutions to prepare agriculture for the challenges posed by climate change. Their efficient utilisation depends on understanding their history and genetic relationships. The current study investigates the phylogenetic relationships of barley landraces from Algeria, varieties from the Near and Middle East, traditional landraces, and modern cultivars from Europe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!