Continuing our theoretical studies of glucosamine synthase catalysis, we have carried out MNDO and ab initio calculations of the first stage of the reaction, which involves the attack of a cysteine thiol group from the enzyme active site on the side chain carboxyamide group of glutamine, producing ammonia and thioester. The reactants were modelled by methyl mercaptate and acetamide, respectively. For two considered mechanisms of the reaction the energy surfaces were evaluated. Mechanism I, proposed by Chmara et al. (1985) involves the nucleophilic attack of a deprotonated thiol group on the carbonyl carbon atom. Mechanism II, postulated in our previous work (Tempczyk et al. 1989), assumes the concerted binding of the mercaptate sulphur to the carbonyl carbon and the sulfhydryl hydrogen to the amide nitrogen with simultaneous breaking of the S-H bond. The energy surface of mechanism I shows no minimum on the approach of the mercaptide anion towards the carbonyl carbon, which is also consistent with ab initio calculations in a 4-31 G basis set. Therefore, mechanism I seems to be unlikely. The same analysis of mechanism II shows that it leads to the desired products: methyl thioacetate and ammonia. The presence of a sulfhydryl hydrogen causes apparent pyramidicity of the amido nitrogen and lengthening of the C-N bond in the transition state, making conditions for the release of the ammonia molecule. The MNDO calculated energy barrier of the reaction is 50.1 kcal/mol and the approximate 4-31 G ab initio barrier (at the MNDO geometries of the substrate complex and the transition state) is 63 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00185428DOI Listing

Publication Analysis

Top Keywords

carbonyl carbon
12
glucosamine synthase
8
carboxyamide group
8
initio calculations
8
thiol group
8
sulfhydryl hydrogen
8
transition state
8
mechanism
5
theoretical study
4
study glucosamine
4

Similar Publications

Due to its commercial availability and well-defined structure, the interaction between bovine protein β-lactoglobulin (βLG) and a wide variety of non-native ligands - including transition metal complexes - has been explored, but its application as an artificial metalloenzyme scaffold is limited. This protein is hypothesized to transport fatty acids and other nutrients during juvenile development, and it binds hydrophobic ligands inside a binding pocket constructed upon an 8-stranded β-barrel, called the 'calyx'. Herein, we compare the binding behavior of two rhenium(anthracene-bispyridine) ('Anth-py') tricarbonyl complexes, one with a 12‑carbon chain appended to the ligand scaffold ('Anth-py') to βLG.

View Article and Find Full Text PDF

A new polymer with rich carbonyl delocalized π-conjugated structure for high-performance aqueous zinc ion batteries.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003 Xinjiang, China. Electronic address:

The development of sustainable and clean energy has become a top priority, driven by global carbon peaking and carbon neutrality targets. Organics are widely used in aqueous zinc ion batteries (AZIBs) due to their environmental friendliness, high structural designability, and safety. However, organic materials often face some challenges, including high solubility, low specific capacity, and unclear mechanism, which hinder its further applications.

View Article and Find Full Text PDF

Introduction: This article describes the invention of graphene oxide (GO) or reduced graphene oxide (rGO) functionalised with 2-methoxy estradiol. The presence of polar hydroxyl groups enables the binding of 2-ME to GO/rGO through hydrogen bonds with epoxy and hydroxyl groups located on the surface and carbonyl and carboxyl groups located at the edges of graphene flake sheets.

Methods: The patented method of producing the subject of the invention and the research results regarding its anticancer effectiveness via cytotoxicity in an in vivo model (against A375 melanoma and 143B osteosarcoma cells) are described.

View Article and Find Full Text PDF

Fully Atomistic Molecular Dynamics Simulation of Ice Nucleation Near an Antifreeze Protein.

J Am Chem Soc

January 2025

Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.

Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).

View Article and Find Full Text PDF

Acrylic nitriles are a versatile class of synthetic precursors for a variety of pharmaceutically active compounds, as well as for nitrile polymers. We devised a stereoselective synthesis of ()-acrylic nitriles from the Ru-catalyzed coupling reaction of nitriles with unsaturated carbonyl compounds via C-C bond cleavage. Both carbon KIE and Hammett correlation data indicated that C-C bond cleavage is the rate-determining step for the coupling reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!