Lethality, DNA alkylation, and cell cycle effects of adozelesin (U-73975) on rodent and human cells.

Cancer Res

Cancer and Infectious Diseases Research, Upjohn Company, Kalamazoo, Michigan 49001.

Published: October 1992

Adozelesin (U-73975) is an extremely potent cytotoxic agent which causes 90% lethality, after 2 h exposure in vitro, of Chinese hamster ovary and lung (CHO and V79), mouse melanoma (B16), and human ovarian carcinoma (A2780) cells at 0.33, 0.19, 0.2, and 0.025 ng/ml, respectively. Under similar conditions, Adriamycin and cisplatin had 90% lethality values in CHO cells of 150 ng/ml (= 249 nM) and 6800 ng/ml (= 2266 nM), respectively. The relative drug sensitivity of the cell lines (A2780 > V79, B16, CHO) was correlated to the relative amounts of [3H]adozelesin alkylated to DNA. The greater sensitivity of A2780 was due to (a) greater DNA alkylation at different drug doses and (b) greater intrinsic sensitivity of A2780 which resulted in greater cell kill at comparable DNA alkylation. Phase specific toxicity studies show that adozelesin was least lethal to CHO cells in mitosis and very early G1. Lethality increased as cells progressed through G1 and was maximal in late G1 and early S. Mitotic cells had lower drug uptake and correspondingly less drug binding to DNA than G1 or S-phase cells. However, based on the amount of drug alkylated per micrograms of DNA, cells in M, G1, and S were equally sensitive. Therefore, the lower sensitivity of M-phase cells was due to lower drug uptake. Adozelesin had three different effects on progression of CHO, V79, B16, and A2780 through the cell cycle: (a) slowed progression through S which resulted in significantly increasing the percentage of S-phase cells. This effect was transient; (b) cell progression was blocked in G2 for a long time period; (c) the response of the cell lines to the G2 block differed. CHO and V79 cells escaped G2 block by dividing and entered the diploid DNA cycle or did not undergo cytokinesis and became tetraploid. On the contrary, B16 and A2780 cells remained blocked in G2 and did not become tetraploid. Cell progression was inhibited in a similar manner when a synchronized population of M, G1, or S-phase cells were exposed to adozelesin.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cells
13
dna alkylation
12
cho v79
12
s-phase cells
12
cell cycle
8
adozelesin u-73975
8
90% lethality
8
a2780 cells
8
cho cells
8
cell lines
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

ECU, Perth, Western Australia, Australia.

Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Background: Immunotherapy of Alzheimer's disease (AD) is a promising approach to reducing the accumulation of beta-amyloid, a critical event in the onset of the disease. Targeting the group II metabotropic glutamate receptors, mGluR2 and mGluR3, could be important in controlling Aβ production, although their respective contribution remains unclear due to the lack of selective tools.

Method: 5xFAD mice were chronically treated by a brain penetrant camelid single domain antibody (VHH or nanobody) that is an activator of mGluR2.

View Article and Find Full Text PDF

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Background: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.

Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!