Trypsin and acid phosphatase-containing silica sol-gel glasses were obtained by mixing a solution of an enzyme with polyethylene glycol (PEG) 6000 and tetramethoxy orthosilicate at room temperature, followed by gelation and drying. Activity of the immobilized trypsin toward small substrates, such as N-benzoyl-L-arginine-4-nitroanilide at its Km, for the best preparations equaled that of the soluble enzyme. Polylysine (M(r) less than or equal to 13,000) and aprotinin (M(r) = 6,500) inhibited this activity. Larger polylysines as well as soybean trypsin inhibitor (M(r) = 20,100) were ineffective. The sol-gel-entrapped trypsin activity was stable when sol-gel glasses were incubated at ambient temperature (pH 7.5) for several months. In comparison, trypsin, immobilized in sol-gel glass by surface adsorption and incubated under the same conditions overnight, was completely autodigested. The firm interaction between the protein molecules and the silica matrix stabilized the enzymes. Thus, the half-life of sol-gel-entrapped acid phosphatase at 70 degrees C (pH 8.0) was two orders of magnitude larger than that of the enzyme in solution. Transparent, mechanically and chemically stable bioactive sol-gel glasses may be used for the development of robust on-line biochemical photodetection sensors and for the purposes of chemical catalysis.
Download full-text PDF |
Source |
---|
J Dent Sci
January 2025
Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea.
To overcome limitations of dentin bonding due to collagen degradation at a bonded interface, incorporating bioactive glass (BAG) into dentin adhesives has been proposed to enhance remineralization and improve bonding durability. This study evaluated sol-gel-derived BAGs (BAG79, BAG87, BAG91, and BAG79F) and conventional melt-quenched BAG (BAG45) incorporated into dentin adhesive to assess their remineralization and mechanical properties. The BAGs were characterized by using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy for surface morphology.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India.
Hydroxyapatite (HAP) is a well-known medically renowned bioactive material known for its excellent biocompatibility and mechanical stability, but it lacks fast bioactivity. The restricted release of ions from hydroxyapatite encourages the search for a faster bioactive material that could replicate other properties of HAP. A new sol-gel-mediated potentially bioactive glass material that could mimic the structure of HAP but can surpass the performance of HAP bioactively has been formulated in this study.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China; National Key Laboratory of Biobased Transportation Fuel Technology, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
Cellulose has outstanding potential for application in energy storage batteries due to its high temperature resistance, high electrolyte affinity, renewability, and suppression of the shuttle effect, but single cellulose membranes still suffer from problems such as inhomogeneous pore distribution and unstable three-dimensional network structure. In this study, a green and sustainable regenerative cellulose (RC)/sodium alginate (SA) gel electrolyte membrane is developed by sol-gel process, the double crosslinked network scaffold centered on Zn was constructed by the synergistic hydrogen-bonding and metal ion- coordination network, the stable and uniform pore structure was also formed. The obtained RC-SA gel electrolyte membrane exhibits outstanding performance, featuring a dual crosslinked network with abundant pore structure and numerous polar groups that effectively enhance Zn transport, significantly improving battery cycling performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!