Plasmin inhibited the biosynthesis of tissue-type plasminogen activator (tPA) antigen by human umbilical vein endothelial cells (HUVEC) in a dose-dependent manner. The amount of tPA antigen found in the 24-h conditioned medium of cells treated with 100 nM plasmin for 1 h was 20-30% of that in the control group. However, in contrast to tPA, such treatment led to a 3-fold increase in plasminogen activator inhibitor (PAI) activity, whereas the amount of PAI type 1 antigen was unchanged. The effects of plasmin on HUVEC were binding- and catalytic activity-dependent and were specifically blocked by epsilon-aminocaproic acid. Microplasmin, which has no kringle domains, was less effective in reducing tPA antigen biosynthesis or enhancing PAI activity in HUVEC. Kringle domains of plasmin affected neither tPA antigen nor PAI activity of the cells. Other proteases including chymotrypsin, trypsin, and collagenase at comparable concentrations did not have a significant effect on the biosynthesis of tPA antigen or PAI activity of HUVEC. Thrombin stimulated the biosynthesis of tPA and PAI-1 antigens by HUVEC. Thrombin also stimulated an increase in the protein kinase activity in HUVEC, whereas plasmin inhibited the protein kinase activity of the cells. It is possible that plasmin regulates the biosynthesis of tPA in HUVEC through the signal transduction pathway involving protein kinase.
Download full-text PDF |
Source |
---|
mSphere
December 2024
Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China.
is a prominent Gram-negative and encapsulated opportunistic pathogen that causes a multitude of infections such as severe respiratory and healthcare-associated infections. Despite the widespread anti-microbial resistance and the high mortality rate, currently, no clinically vaccine is approved for battling . To date, messenger RNA (mRNA) vaccine is one of the most advancing technologies and are extensively investigated for viral infection, while infrequently applied for prevention of bacterial infections.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Selective delivery of therapeutic modalities to tumor cells via binding of tumor-selective cell-surface biomarkers has empowered substantial advances in cancer treatment. Yet, tumor cells generally lack a truly specific biomarker that is present in high density on tumor tissue while being completely absent from healthy tissue. Rather, low but nonzero expression in healthy tissues results in on-target, off-tumor activity with detrimental side effects that constrain the therapeutic window or prevent use altogether.
View Article and Find Full Text PDFOncoimmunology
December 2024
Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor characterized by poor prognosis and lack of effective treatments. In recent years, peptide vaccines that use sequences based on tumor-specific or tumor-associated antigens to activate immune responses against tumor cells have emerged as a new therapeutic strategy. In this study, we developed a novel therapeutic polypeptide vaccine targeting the tumor-associated antigen Fibrinogen-Like Protein 2 (FGL2), whose dominant epitope peptide was tandemly linked to the C-terminus of HCMV-IE1mut via a linker.
View Article and Find Full Text PDFACS Appl Bio Mater
November 2024
Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India.
An economical, rapid, and ultrasensitive detection of biomolecules in clinical settings is very crucial, particularly for the early detection of Cardiac Troponin I (cTnI), which is the gold standard biomarker for Acute Myocardial Infarction (AMI). Electrochemiluminescence (ECL) has risen in prominence as an important technique for in vitro diagnosis and detection by virtue of its high sensitivity reaching a femtomolar level. This study introduces an economically feasible nanoplatform for ECL immunosensing, consisting of a gold nanoparticle (AuNP) with Ru(bpy) and tripropylamine (TPA) system, which is a potential ECL luminophore and coreactant system.
View Article and Find Full Text PDFNano Lett
November 2024
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!