Alterations in ascorbic acid transport into the lens of streptozotocin-induced diabetic rats and guinea pigs.

Invest Ophthalmol Vis Sci

Department of Physiology and Biophysics, New York University School of Medicine, New York.

Published: September 1992

High ascorbic acid (AA) levels in the aqueous humor and intraocular tissues, including the lens, are thought to protect against the harmful effects of photochemical and ambient oxidation reactions involving oxygen and its radicals. In addition, AA may have various metabolic functions, including structural collagen formation in intraocular tissues. Recent work showed that, in the guinea pig, reduced AA was concentrated in the aqueous and lens epithelium. These in vivo studies were extended to streptozotocin-induced diabetic rats and guinea pigs to explore the state of AA transport and passive L-glucose movement in the diabetic lens. A bolus dose of radiolabeled test molecules, including 14C-AA, 3H-L-glucose (L-glu), and 14C-3-O-methyl-D-glucose, was injected into the blood at time zero, and the time-dependent concentrations of these labeled molecules were determined as they move into the aqueous humor, lens epithelium and capsule, and interior compartments. These kinetic studies provided a unique measurement of the functioning state of passive and carrier transport mechanisms in situ in normal and diabetic animals. Diabetic animals (blood glucose, greater than 300 mg/dl) were categorized in terms of the length of time of uniform monitored drug-induced diabetes as short term (10-20 days); midterm (40-60 days), and long term (100+ days). In the rat lens epithelium, significant decrease occurred in the active movement of AA (control KEi, 0.693 +/- 0.062 [n = 12]; midterm drug-induced diabetes Ki, 0.192 +/- 0.054 [n = 10]; t-test P less than 0.001). The passive L-glu entry rate increased (control KEi, 0.0268 +/- 0.0053 [n = 12]; midterm drug-induced diabetes KEi, 0.0421 +/- 0.075 [n = 10]; t-test P less than 0.005). Thus, it was suggested that the drug-induced diabetic rat lens epithelium had lost some of its ability to concentrate AA to high levels and achieved epithelial levels only one- to twofold those of aqueous; control animals concentrated AA to levels of five- to eightfold those of aqueous within 20 min. By contrast, the rate of movement of L-glu from epithelium to stroma increased minimally (control KSi, 0.0116 +/- 0.021 [n = 12]; midterm drug-induced diabetes KSi, 0.0136 +/- 0.034 [n = 10]; t-test P less than 0.05). In addition, AA entry rate into lens cortex increased fourfold (control KSi, = 0.0018 +/- 0.0003 [n = 12]; midterm drug-induced diabetes KSi, 0.0081 +/- 0.024 [n = 10]; t-test P less than 0.001).(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source

Publication Analysis

Top Keywords

drug-induced diabetes
20
lens epithelium
16
12] midterm
16
midterm drug-induced
16
10] t-test
16
ascorbic acid
8
lens
8
streptozotocin-induced diabetic
8
diabetic rats
8
rats guinea
8

Similar Publications

A 53-year-old woman presented with an eruption on her face and body for 2 weeks that had developed first on the face before spreading to the trunk and extremities. There was burning with sunlight exposure. Her medical conditions included diabetes mellitus, vitamin D deficiency, and hyperlipidemia.

View Article and Find Full Text PDF

The extent to which newer, incretin-based drugs for obesity improve disease outcomes via weight loss versus the direct effects of these drugs is the subject of intense interest. Although reductions in major adverse cardiovascular events appear to be predominantly driven by the direct tissue effects of such drugs, the associated weight loss effects must be relevant to the benefits observed in other major outcomes, albeit to differing extents. In this Personal View, we draw on evidence to support that weight loss is at least partly responsible (albeit to differing extents) for the reported benefits of incretin-based drugs for obesity in people living with heart failure with preserved ejection fraction, hypertension, chronic kidney disease, and type 2 diabetes.

View Article and Find Full Text PDF

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are emerging as an important class of drugs in the management of Type 2 Diabetes Mellitus (T2DM) and obesity. There are rising concerns of pulmonary aspiration with these medications due to drug-induced gastroparesis. While definitive association is uncertain, it is essential to be prudent and manage these patients as per the current evidence and recommendations.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) receptor agonists, including tirzepatide (Mounjaro), are widely used to manage type 2 diabetes mellitus (T2DM) and obesity. While gastrointestinal side effects are common, acute pancreatitis remains a rare but significant complication. Limited evidence exists on the risks associated with switching between GLP-1 agonists, emphasizing the need for clinical awareness.

View Article and Find Full Text PDF

Mapping the effectiveness and risks of GLP-1 receptor agonists.

Nat Med

January 2025

Clinical Epidemiology Center, Research and Development Service, VA St. Louis Health Care System, St. Louis, MO, USA.

Glucagon-like peptide 1 receptor agonists (GLP-1RAs) are increasingly being used to treat diabetes and obesity. However, their effectiveness and risks have not yet been systematically evaluated in a comprehensive set of possible health outcomes. Here, we used the US Department of Veterans Affairs databases to build a cohort of people with diabetes who initiated GLP-1RA (n = 215,970) and compared them to those who initiated sulfonylureas (n = 159,465), dipeptidyl peptidase 4 (DPP4) inhibitors (n = 117,989) or sodium-glucose cotransporter-2 (SGLT2) inhibitors (n = 258,614), a control group composed of an equal proportion of individuals initiating sulfonylureas, DPP4 inhibitors and SGLT2 inhibitors (n = 536,068), and a control group of 1,203,097 individuals who continued use of non-GLP-1RA antihyperglycemics (usual care).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!