Download full-text PDF

Source

Publication Analysis

Top Keywords

artificial hibernation
4
hibernation surgery
4
surgery hyperthyroidism
4
hyperthyroidism follow-up
4
follow-up report
4
artificial
1
surgery
1
hyperthyroidism
1
follow-up
1
report
1

Similar Publications

Variation and assembly mechanisms of skin and cave environmental fungal communities during hibernation periods.

Microbiol Spectr

January 2025

Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.

Animal skin acts as the barrier against invasion by pathogens and microbial colonizers. Environmental microbiota plays a significant role in shaping these microbial communities, which, in turn, have profound implications for host health. Previous research has focused on characterizing microorganisms on bats' skin and in their roosting environments, particularly bacterial communities.

View Article and Find Full Text PDF

Identification of hypothermia-inducing neurons in the preoptic area and activation of them by isoflurane anesthesia and central injection of adenosine.

J Physiol Sci

January 2025

Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, 890-8544, Kagoshima, Japan. Electronic address:

Hibernation and torpor are not passive responses caused by external temperature drops and fasting but are active brain functions that lower body temperature. A population of neurons in the preoptic area was recently identified as such active torpor-regulating neurons. We hypothesized that the other hypothermia-inducing maneuvers would also activate these neurons.

View Article and Find Full Text PDF

Nail growth arrest under low body temperature during hibernation.

J Physiol Sci

January 2025

Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan; Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan; Inamori Research Institute for Science Fellowship (InaRIS), Kyoto, Japan. Electronic address:

Growth and differentiation are reduced or stopped during hibernation, an energy conserving strategy in harsh seasons by lowered metabolism and body temperature. However, few studies evaluated this in a same individual using a non-invasive method. In this study, we applied a non-invasive tracking method of the nail growth throughout the hibernation period in the same hibernating animals, the Syrian hamster (Mesocricetus auratus).

View Article and Find Full Text PDF

Hibernating mammals such as the thirteen-lined ground squirrel () experience significant reductions in oxidative metabolism and body temperature when entering a state known as torpor. Animals entering or exiting torpor do not experience permanent loss of brain function or other injuries, and the processes that enable such neuroprotection are not well understood. To gain insight into changes in protein function that occur in the dramatically different physiological states of hibernation, we performed quantitative phosphoproteomics experiments on thirteen-lined ground squirrels that are summer-active, winter-torpid, and spring-active.

View Article and Find Full Text PDF

Bat Viral Shedding: A Review of Seasonal Patterns and Risk Factors.

Vector Borne Zoonotic Dis

January 2025

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

Bats act as reservoirs for a variety of zoonotic viruses, sometimes leading to spillover into humans and potential risks of global transmission. Viral shedding from bats is an essential prerequisite to bat-to-human viral transmission and understanding the timing and intensity of viral shedding from bats is critical to mitigate spillover risks. However, there are limited investigations on bats' seasonal viral shedding patterns and their related risk factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!