Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, 4117-13114, Iran.
Humans encounter both natural and artificial radiation sources, including cosmic rays, primordial radionuclides, and radiation generated by human activities. These radionuclides can infiltrate the human body through various pathways, potentially leading to cancer and genetic mutations. A study was conducted using random sampling to assess the concentrations of radioactive isotopes and heavy metals in mineral water from Iran, consumable at Arak City.
View Article and Find Full Text PDFNat Commun
January 2025
School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
Radioactive molecular iodine (I) is a critical volatile pollutant generated in nuclear energy applications, necessitating sensors that rapidly and selectively detect low concentrations of I vapor to protect human health and the environment. In this study, we design and prepare a three-component sensing material comprising reduced graphene oxide (rGO) as the substrate, silver iodide (AgI) particles as active sites, and polystyrene sulfonate as an additive. The AgI particles enable reversible adsorption and conversion of I molecules into polyiodides, inducing substantial charge density variation in rGO.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Global Clinical Development, Chiesi Farmaceutici SpA, Parma, Italy.
Tanimilast is an inhaled phosphodiesterase-4 inhibitor currently in phase III clinical development for treating chronic obstructive pulmonary disease and asthma. This trial aimed to characterize the pharmacokinetics, mass balance, and metabolite profiling of tanimilast. Eight healthy male volunteers received a single dose of nonradiolabeled tanimilast via powder inhaler (Chiesi NEXThaler [3200 μg]), followed by a concomitant intravenous infusion of a microtracer ([C]-tanimilast: 18.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Johannes-Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany.
Precise measurements of fundamental decay data such as energies and transition probabilities of radioactive isotopes are important for the development of corresponding nuclear modelling, activity determination and various applications in science and technology. The EMPIR project PrimA-LTD -"Towards new Primary Activity standardisation methods based on Low-Temperature Detectors" - aims to measure the electron-capture decay of Fe very precisely using Metallic Microcalorimeters (MMCs) with outstandingly high energy resolution. Using a high-statistics measurement, electron-capture probabilities shall be precisely determined and higher-order effects such as electron shake-up and shake-off shall be examined with unprecedented precision.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Syngenta Ltd, Jealott's Hill International Research Centre, Warfield, Bracknell, RG42 6EY, UK.
Brazilian soils have distinctive characteristics to European and North American soils which are typically used to investigate pesticide fate. This study aimed to compare soil-water partition coefficient (K), reversibility of adsorption and degradation half-life (DT) of 5 pesticides covering a wide range of physico-chemical properties in contrasting Brazilian soils (Argissolo, Gleissolo, Latossolo and Neossolo) and a temperate (UK) alfisol soil, and to study their relationship with soil OM, clay and expandable clay content, CEC and pH. In addition, we used a novel laboratory test to evaluate sorption reversibility, the 3-Phase Assay (3PA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!