A stable isotope dilution method was developed for the measurement of 2-hydroxyphytanic acid and 2-oxophytanic acid in plasma. In plasma from healthy individuals and from patients with Refsum's disease, 2-hydroxyphytanic acid was found at levels less than 0.2 mumol/l, whereas the acid accumulated in plasma from patients with rhizomelic chondrodysplasia punctata, generalized peroxisomal dysfunction, and a single peroxisomal beta-oxidation enzyme deficiency. In plasma from both healthy controls and patients with peroxisomal disorders, 2-oxophytanic acid was undetectable. Four different groups of diseases were characterized with a defective phytanic acid alpha-oxidation and/or pristanic acid beta-oxidation: 1) Refsum's disease, with a defect at phytanic acid alpha-hydroxylation; 2) rhizomelic chondrodysplasia punctata, with a defect at 2-hydroxyphytanic acid decarboxylation; 3) generalized peroxisomal disorders, with defects at 2-hydroxyphytanic acid decarboxylation and at pristanic acid beta-oxidation; 4) single peroxisomal beta-oxidation enzyme deficiencies, with a defect at pristanic acid beta-oxidation, resulting in an impaired phytanic acid alpha-oxidation by inhibition. The results indicate that 2-hydroxyphytanic acid decarboxylation and pristanic acid beta-oxidation take place in peroxisomes.
Download full-text PDF |
Source |
---|
Int J Mol Sci
January 2022
Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK.
Peroxisomal fatty acid α-oxidation is an essential pathway for the degradation of β-carbon methylated fatty acids such as phytanic acid. One enzyme in this pathway is 2-hydroxyacyl CoA lyase (HACL1), which is responsible for the cleavage of 2-hydroxyphytanoyl-CoA into pristanal and formyl-CoA. Hacl1 deficient mice do not present with a severe phenotype, unlike mice deficient in other α-oxidation enzymes such as phytanoyl-CoA hydroxylase deficiency (Refsum disease) in which neuropathy and ataxia are present.
View Article and Find Full Text PDFLipids
December 1998
Department of Molecular Regulation, Osaka City University Medical School, Japan.
Fatty acid alpha-hydroxylase, a cytochrome P450 enzyme, from Sphingomonas paucimobilis, utilizes various straight-chain fatty acids as substrates. We investigated whether a recombinant fatty acid alpha-hydroxylase is able to metabolize phytanic acid, a methyl-branched fatty acid. When phytanic acid was incubated with the recombinant enzyme in the presence of H2O2, a reaction product was detected by gas chromatography, whereas a reaction product was not detected in the absence of H2O2.
View Article and Find Full Text PDFBiochim Biophys Acta
October 1997
Department of Clinical Chemistry, Free University Hospital, Amsterdam, The Netherlands.
We studied the alpha-oxidation of phytanic acid in human fibroblasts of controls and patients affected with classical Refsum disease, rhizomelic chondrodysplasia punctata, generalized peroxisomal disorders and peroxisomal bifunctional protein deficiency. Cultured fibroblasts were incubated with phytanic acid, after which medium and cells were collected separately. 2-Hydroxyphytanic acid and pristanic acid were measured in the medium and cells by stable isotope dilution gas chromatography mass spectrometry.
View Article and Find Full Text PDFJ Lipid Res
October 1997
Institute for Endocrinology, Reproduction and Metabolism and Department of Clinical Chemistry, Free University Amsterdam, The Netherlands.
The degradation of the first intermediate in the alpha-oxidation of phytanic acid, 2-hydroxyphytanoyl-CoA, was investigated. Human liver homogenates were incubated with 2-hydroxyphytanoyl-CoA or 2-hydroxyphytanic acid, after which formation of 2-ketophytanic acid and pristanic acid were studied. 2-Hydroxyphytanic acid was converted into 2-ketophytanic acid and pristanic acid.
View Article and Find Full Text PDFJ Inherit Metab Dis
November 1995
Academic Medical Centre, University of Amsterdam, Department of Pediatrics, The Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!