Interleukin-2 (IL-2) potently stimulates natural killer (NK) cell proliferation and cytotoxic function. However, the molecular mechanisms by which IL-2 delivers activation signals from the IL-2 receptor to the NK cell interior are incompletely understood. Previous studies demonstrated that IL-2 stimulation induced the tyrosine phosphorylation of multiple proteins in NK cells, together with a prominent reduction in the electrophoretic mobility of p56lck. The present studies indicate that IL-2 induces a rapid (< or = 1 min) increase in the catalytic activity of p56lck, as measured by increases in protein tyrosine kinase activity in vitro. Furthermore, in response to IL-2, p56lck itself undergoes complex alterations in serine and tyrosine phosphorylation. Cyanogen bromide cleavage maps indicate that IL-2 stimulates a pronounced increase in the phosphorylation of the NH2-terminal region of p56lck containing multiple known sites of serine phosphorylation. In addition, IL-2 induced a marked increase in the phosphorylation of a COOH-terminal peptide containing the regulatory Tyr-505 residue of p56lck. These results suggest that p56lck serves as a substrate for both protein serine and tyrosine kinases activated during stimulation of this cell type with IL-2. Furthermore, these results indicate that the pleiotropic effects of IL-2 on NK cell physiology are initiated and regulated by a complex and multitiered interaction of different protein kinases including p56lck.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jlb.52.5.565DOI Listing

Publication Analysis

Top Keywords

il-2
10
tyrosine kinase
8
p56lck
8
tyrosine phosphorylation
8
indicate il-2
8
serine tyrosine
8
increase phosphorylation
8
phosphorylation
6
tyrosine
5
interleukin-2 signal
4

Similar Publications

Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma.

Front Immunol

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.

View Article and Find Full Text PDF

Effects of Electroacupuncture Per-Conditioning at Huantiao on Motor Function Recovery in Acute Cerebral Ischemia Mice.

Physiol Behav

January 2025

Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. Electronic address:

Background: Continuous electroacupuncture pre-conditioning (EPRC) and post-conditioning (EPOC) effectively improve motor dysfunction after acute cerebral ischemia, but they require multiple treatments. Recently, electroacupuncture per-conditioning (EPEC) has demonstrated neuroprotective effects, indicating that this single-session intervention has short-term efficacy.

Objective: To evaluate the effect of EPEC at Huantiao (GB30) on motor recovery in acute cerebral ischemia mice.

View Article and Find Full Text PDF

Background: Understanding the immunopathogenesis of COVID-19 has yielded valuable insights into predicting adverse outcomes-particularly mortality. However, significant gaps persist in our comprehension of the complex interplay among the proposed pathophysiological mechanisms. Here, we aim to investigate the immunological factors associated with mortality in critically ill, unvaccinated COVID-19 patients admitted to the intensive care unit (ICU).

View Article and Find Full Text PDF

Design, Synthesis, and biological evaluation of 7H-Pyrrolo[2,3-d]pyrimidines as potent HPK1 kinase inhibitors.

Bioorg Med Chem

January 2025

Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai 201203 China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023 China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Hematopoietic progenitor kinase 1 (HPK1) has emerged as a promising target for cancer immunotherapy due to its critical role as a negative regulator of T cell receptor (TCR) signaling. Despite this potential, no HPK1 inhibitors have been approved for cancer treatment, underscoring the need for structurally novel inhibitors. Herein, we describe the design, synthesis and biological evaluation of a series of potent HPK1 inhibitors based on our previously identified hit 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!