Download full-text PDF

Source

Publication Analysis

Top Keywords

polar expeditions
4
expeditions human
4
human laboratories
4
polar
1
human
1
laboratories
1

Similar Publications

Background: Antarctic expeditions, although supported by scientific knowledge, face various challenges, with little research conducted to explore the physical demands that explorers experience.

Objective: To summarise physiological, psychological, body composition and nutritional changes faced during trek expeditions in the Antarctic's continental portion.

Design: Systematic review.

View Article and Find Full Text PDF

A Gram-stain-positive, aerobic, yellow-pigmented, catalase-positive, oxidase-positive, non-motile with no flagella and irregularly rod-shaped, denominated strain YIM 134122, was isolated from a Stereocaulon tomentosum Fr. lichen gathered on Baima Snow Mountain in Diqing Tibetan Autonomous Prefecture, Yunnan Province, China. The novel strain grew at pH 6.

View Article and Find Full Text PDF

Summer profiles: Tracing currently used organophosphorus pollutants in the surface seawater of the Arctic Ocean.

Sci Total Environ

January 2025

Ministry of Natural Resources Key Laboratory for Polar Sciences, Polar Research Institute of China, NO.451, Jinqiao Road, Shanghai, 200136, China; Zhejiang University of Water Resources and Electric Power, NO. 508, Second Avenue, Hangzhou, Zhejiang, 310018, China. Electronic address:

We investigate the spatial distribution and potential ecological impact of Currently Used Organophosphorus Pollutants (CUOPPs) in the Arctic Ocean, focusing on the East Siberian Sea, Laptev Sea, and high Arctic regions. Analyzing surface water samples collected during a scientific expedition aboard the "Xuelong 2" in August and September 2021, we detected 38 out of 83 targeted CUOPPs, including Phorate, Paraoxon, and Azinphos-ethyl, with concentrations exhibiting significant geographical variance. The results reveal a pronounced increase in CUOPP concentrations towards the Arctic poles, diverging markedly from the patterns observed in the East China Sea, thereby highlighting distinct regional pollution profiles and environmental interactions.

View Article and Find Full Text PDF
Article Synopsis
  • - The study analyzes Early Eocene Arctic climate dynamics using sediments to understand climate patterns without ice, focusing on orbital variability that influenced climate changes during that period.
  • - High-resolution records of lipid biomarkers and pollen indicate that temperature changes were linked to orbital cycles, with significant sea surface temperature increases tied to higher precipitation and nutrient supply in the Arctic Basin.
  • - The research suggests that Arctic climate responses during the Early Eocene were significantly influenced by local insolation, showing stronger temperature variability compared to the deep ocean and tropics, even in the absence of ice-albedo feedbacks.
View Article and Find Full Text PDF

Nocardioides xinjiangensis sp. nov., a novel species isolated from desert soil.

Antonie Van Leeuwenhoek

November 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑Sen University, Guangzhou, 510275, People's Republic of China.

Two novel strains, SYSU D00514 and SYSU D00778, were isolated from desert soil in the Gurbantunggut Desert, Xinjiang Uygur Autonomous Regions, PR China. SYSU D00514 and SYSU D00778 were aerobic, Gram-stain-positive, rod-shaped, catalase-positive and oxidase-negative. SYSU D00514 grew at temperatures ranging from 4 to 37 °C (optimum, 28-30 °C), at pH 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!