The iodide channel of the thyroid: a plasma membrane vesicle study.

Am J Physiol

Department of Physiology and Pathophysiology, School of Medicine, Université Libre de Bruxelles, Belgium.

Published: September 1992

The uptake of radioactive iodide or chloride by plasma membrane vesicles of bovine thyroid was studied by a rapid filtration technique. A Na(+)-I- cotransport was demonstrated. When this Na(+)-I- cotransport is inactive (i.e., at 4 degrees C and in the absence of Na+), an uptake of iodide above chemical equilibrium could be induced, driven by the membrane potential. The latter was set up by allowing potassium to diffuse into the membrane vesicles in the presence of valinomycin and of an inward K+ gradient. This potential difference (positive inside) induced the uptake of iodide (or other anion present). The data support the existence of two anionic channels. The first one, observed at low near-physiological iodide concentration (micromolar range), which exhibits a high permeability and specificity for iodide (hence called the iodide channel), has a Km of 70 microM. The other one appears similar to the epithelial anion channel as described by Landry et al. (J. Gen. Physiol. 90: 779-798, 1987); it is still about fourfold more permeable to iodide than to chloride and presents a Km of 33 mM. Under physiological conditions the latter channel would mediate chloride transport, and the iodide channel, which is proposed to be restricted to the apical plasma membrane domain of the thyrocyte, transports iodide from the cytosol to the colloid space.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.1992.263.3.C590DOI Listing

Publication Analysis

Top Keywords

iodide channel
12
plasma membrane
12
iodide
10
iodide chloride
8
membrane vesicles
8
na+-i- cotransport
8
uptake iodide
8
membrane
5
channel thyroid
4
thyroid plasma
4

Similar Publications

Graphene is a single-layered sp-hybridized carbon allotrope, which is impermeable to all atomic entities other than hydrogen. The introduction of defects allows selective gas permeation; efforts have been made to control the size of these defects for higher selectivity. Permeation of entities other than gases, such as ions, is of fundamental scientific interest because of its potential application in desalination, detection and purification.

View Article and Find Full Text PDF

The purinergic P2X ligand-gated ion channel 7 receptor (P2X7R) plays a critical role in various inflammatory processes and other diseases. Fast determination of compounds P2X7R binding potency and discovery of a promise PET radiotracer for imaging P2X7R require a P2X7R suitable radioligand for radioactive competitive binding assay. Herein, we designed and synthesized thirteen new P2X7R ligands and determined the in vitro binding potency.

View Article and Find Full Text PDF

Osteogenic Induction Activity of Magnesium Chloride on Human Periodontal Ligament Stem Cells.

Int Dent J

December 2024

Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand. Electronic address:

Objectives: Periodontal ligament stem cells (PDLSCs) are promising for regenerative therapies due to their self-renewal and multilineage differentiation, essential for periodontal tissue repair. Although magnesium plays a vital role in bone metabolism, its specific effects on PDLSCs and potential applications in regeneration are unclear. This study aimed to investigate the effects of magnesium chloride (MgCl₂) on the proliferation and osteogenic differentiation of human PDLSCs (hPDLSCs).

View Article and Find Full Text PDF

The direct photodetachment and two-photon photodissociation-photodetachment processes of a series of PtIn- (n = 2-5) anions were systematically studied using cryogenic anion photoelectron spectroscopy and first-principles electronic structure calculations. The adiabatic/vertical detachment energies (ADEs/VDEs) of these anions were determined from their 193 nm photoelectron (PE) spectra, i.e.

View Article and Find Full Text PDF

The purpose of this study was to identify the role played by circEEF2 (has-circ-0048559) in prostate cancer (PCa) development and to determine the potential mechanism involved. circEEF2, miR-625-5p, and the transient receptor potential M2 channel protein (TRPM2) were determined using RT-qPCR in PCa. Cell proliferation was determined by CCK-8 assay and colony formation assay, whereas migration and invasion were assessed by Transwell assay, and apoptosis was evaluated by flow cytometry after annexin V-FITC and propidium iodide staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!