Purified cytochrome b5 from rabbit liver microsomes was bound to liposomes prepared from microsomal lipids. Tyrosyl and tryptophyl side chains of the protein were modified by water-soluble reagents and the reactivities of these amino acid residues in the liposome-bound cytochrome b5 were compared to those of the free protein. At pH 13, 80% of the tyrosines in lipid-free cytochrome b5 ionized immediately, whereas in the lipid-bound protein only 65% ionized within the first minute. In contrast, acetylation with acetylimidazole resulted in the conversion of all 5 tyrosine groups of lipid-free as well as lipid-bound cytochrome b5 into O-acetylated derivatives, which upon treatment with hydroxylamine were completely deacetylated. Reaction with N-bromosuccinimide revealed that only 60% of the 4 tryptophan residues present in cytochrome b5 were accessible to the reagent in the lipid-bound protein, although all tryptophans could be modified in lipid free cytochrome b5. It was concluded that the two tyrosines in the region linking the protein to the membrane are not shielded by lipid bilayer but that of the three tryptophans in the same region one is completely buried in the membrane, whereas the remaining two tryptophans may be both partly exposed to the solvent or alternatively, one may be partially and the other completely exposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2736(77)90353-4DOI Listing

Publication Analysis

Top Keywords

tryptophan residues
8
lipid-bound cytochrome
8
lipid-bound protein
8
cytochrome
7
protein
5
reactivities tyrosine
4
tyrosine tryptophan
4
lipid-bound
4
residues lipid-bound
4
cytochrome purified
4

Similar Publications

Farnesol (FAR) belongs to terpenes group and is a sesquiterpene alcohol and a hydrophobic compound, which can be extracted from natural sources or obtained by organic chemical or biological synthesis. Recent advances in the field of nanotechnology allow the drawbacks of low drug solubility, which can improve the drug therapeutic index. Therefore, this study aimed to prepare the FAR inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) through freeze-drying method, proposing their physicochemical characterization, comparing their toxicity, and evaluating their in vitro antibacterial activity.

View Article and Find Full Text PDF

On the Biosynthesis of Bioactive Tryptamines in Black Cohosh ( L.).

Plants (Basel)

January 2025

Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.

Botanical dietary supplements are widely used, but issues of authenticity, consistency, safety, and efficacy that complicate their poorly understood mechanism of action have prompted questions and concerns in the popular and scientific literature. Black cohosh ( L., syn.

View Article and Find Full Text PDF

During the life cycle of the influenza virus, viral RNPs (vRNPs) are transported to the nucleus for replication. Given that a large number of progeny viral RNA occupies the nucleus, whether there is any host protein located in the nucleus that recognizes the viral RNA and inhibits the viral replication remains largely unknown. In this study, to explore the role of hnRNPH1 in influenza virus infection, we knocked down and over-expressed the hnRNPH1 proteins in 293T cells, then infected the cells with the influenza virus.

View Article and Find Full Text PDF

Antibacterial and Antifungal Activities of Linear and Cyclic Peptides Containing Arginine, Tryptophan, and Diphenylalanine.

Antibiotics (Basel)

January 2025

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA.

We have previously reported peptides composed of sequential arginine (R) residues paired with tryptophan (W) or 3,3-diphenyl-L-alanine residues (Dip), such as cyclic peptides [RW] and [R(Dip)], as antibacterial agents. Herein, we report antibacterial and antifungal activities of five linear peptides, namely ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), ((DipR)(WR)), and (DipR)R, and five cyclic peptides [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], [(DipR)(WR)], and [DipR], containing alternate positively charged R and hydrophobic W and Dip residues against fungal, Gram-positive, and Gram-negative bacterial pathogens. The minimum inhibitory concentrations (MICs) of all peptides were determined by the micro-broth dilution method against , , , , , , , , and .

View Article and Find Full Text PDF

A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!