[Structure and secretory functions of the respiratory epithelium].

Arch Int Physiol Biochim Biophys

INSERM Unité 314, CHU Maison Blanche, Reims.

Published: November 1992

Airway secretions actively participate in respiratory epithelium protection. Apart from its main participation in transport of inhaled microorganisms and particles by mucociliary clearance, respiratory mucus also contributes to other protective purposes such as the control of airway humidification. Biochemical components found in secretions, such as mucins, lipids, antibacterial agents (secretory IgA, lysozyme, lactoferrin), antioxidant and antiprotease components, contribute significantly to the airway epithelium defense.

Download full-text PDF

Source
http://dx.doi.org/10.3109/13813459209000712DOI Listing

Publication Analysis

Top Keywords

[structure secretory
4
secretory functions
4
functions respiratory
4
respiratory epithelium]
4
epithelium] airway
4
airway secretions
4
secretions actively
4
actively participate
4
participate respiratory
4
respiratory epithelium
4

Similar Publications

Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease.

Curr Top Dev Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States.

Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances.

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Endocytosis mediated by megalin and cubilin is involved in enamel development.

Dev Dyn

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Background: Endocytosis of enamel matrix proteins (EMPs) by ameloblasts is a key process in the mineralization of enamel during the maturation stage of amelogenesis. However, the relevant receptor mediating endocytosis of EMPs is still unclear. The aim of this study was to explore potential endocytic receptors involved in this process.

View Article and Find Full Text PDF

Previously, it was found that four types of glandular trichomes (GTs) are developed on the surface of all aerial organs in Doronicum species. A detailed study of leaves had shown that only two types of GTs form in them. Nothing was known about any differences of GTs on vegetative and reproductive organs.

View Article and Find Full Text PDF

The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!