Transgenic mice provide a means to study human gene expression in vivo throughout the aging process. A DNA sequence containing 668 bp of the 5' regulatory region of the human transferrin gene was fused to the bacterial reporter gene chloramphenicol acetyl transferase (TF-CAT) and introduced into the mouse genome. Expression of the human chimeric transferrin gene was similar to the tissue patterns of mouse and human transferrin. In aging transgenic mice, expression of the human chimeric transferrin gene was found to diminish 40% in livers between 18 and 26 months of age. Transferrin levels and serum iron levels in aging humans also diminish, as observed from measurements of total iron binding capacity and percent iron saturation in sera from 701 individuals ranging from 0 to 99 years of age. In contrast, in transgenic mice and nontransgenic mice, the mouse endogenous plasma transferrin and endogenous Tf mRNA increase significantly during aging. Neither the decrease of human TF-CAT nor the increase of mouse transferrin during aging appears to be part of a typical inflammatory reaction. Although the 5' regions of the human transferrin and mouse transferrin genes are homologous, sequence diversities exist which could account for the different responses to inflammation and aging observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4781(92)90008-nDOI Listing

Publication Analysis

Top Keywords

transferrin gene
16
transgenic mice
16
expression human
12
human chimeric
12
chimeric transferrin
12
human transferrin
12
transferrin
11
transferrin levels
8
levels aging
8
aging humans
8

Similar Publications

Purpose: This study aims to investigate the role and mechanism of -hydroxyl cinnamaldehyde (CMSP) in triggering ferroptosis of small cell lung cancer (SCLC) cells.

Methods: The impact of CMSP on ferroptosis in H1688 and SW1271 cells was assessed through cell experiments and biological information analysis. Moreover, the expression of heme oxygenase 1 (HMOX1) in SCLC tissue was examined.

View Article and Find Full Text PDF

Pulmonary endothelial cell (EC) activation is a key factor in acute respiratory distress syndrome (ARDS). In sepsis, increased glycolysis leads to lactate buildup, which induces lysine lactylation (Kla) on histones and other proteins. However, the role of protein lactylation in EC dysfunction during sepsis-induced ARDS remains unclear.

View Article and Find Full Text PDF

Iron metabolism in a mouse model of hepatocellular carcinoma.

Sci Rep

January 2025

Institute of Comparative Molecular Endocrinology, Ulm University, 89081, Ulm, Germany.

Hepatocellular carcinoma (HCC) remains the most prevalent type of primary liver cancer worldwide. p53 is one of the most frequently mutated tumor-suppressor genes in HCC and its deficiency in hepatocytes triggers tumor formation in mice. To investigate iron metabolism during liver carcinogenesis, we employed a model of chronic carbon tetrachloride injections in liver-specific p53-deficient mice to induce liver fibrosis, cirrhosis and subsequent carcinogenesis.

View Article and Find Full Text PDF

Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.

View Article and Find Full Text PDF

Tamoxifen is an inhibitor of estrogen receptors and was originally developed for breast cancer therapy. Besides, tamoxifen is widely used for Cre-estrogen receptor-mediated conditional knockout in transgenic mice. However, we found that the 3-month feeding of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!