Neuroendocrine and epithelial markers in diagnostic bronchial lung cancer biopsy specimens.

Eur J Cancer

Clatterbridge Cancer Research Trust, Clatterbridge Hospital, Bebington, Wirral, U.K.

Published: October 1992

The incidence of neuroendocrine and epithelial markers was investigated by immunocytochemistry in archival, lung cancer, bronchial biopsy specimens (n = 48). No correlation of antigenicity with histological type was observed. 79% non-small cell lung carcinoma (NSCLC) and 61% small cell lung carcinoma (SCLC) were positive for epithelial markers. HuTu-m3 did not discriminate adenocarcinomas and squamous cell carcinomas from SCLC. 83% SCLC and 93% NSCLC were positive for one or more neuroendocrine marker. Multiple neuroendocrine markers were found in 61% SCLC, 83% NSCLC and 83% squamous cell carcinomas, this incidence being greater in the NSCLC group, and in the squamous carcinomas in particular, than previously reported.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0959-8049(92)90131-kDOI Listing

Publication Analysis

Top Keywords

epithelial markers
12
neuroendocrine epithelial
8
lung cancer
8
biopsy specimens
8
cell lung
8
lung carcinoma
8
squamous cell
8
cell carcinomas
8
sclc 83%
8
neuroendocrine
4

Similar Publications

Copper excess induces autophagy dysfunction and mitochondrial ROS-ferroptosis progression, inhibits cellular biosynthesis of milk protein and lipid in bovine mammary epithelial cells.

Ecotoxicol Environ Saf

January 2025

College of Animal Science, Jilin University, Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding In Northeastern Frigid Area, Changchun 130062, China. Electronic address:

Excessive copper (Cu) has the potential risk to ecosystems and organism health, with its impact on dairy cow mammary glands being not well-defined. This study used a bovine mammary epithelial cell (MAC-T) model to explore how copper excess affects cellular oxidative stress, autophagy, ferroptosis, and protein and lipid biosynthesis in milk. Results showed the increased intracellular ROS, MDA, and CAT (P < 0.

View Article and Find Full Text PDF

Specific immunohistochemical expression of Mmp-26 in prostatic adenocarcinoma.

An Acad Bras Cienc

January 2025

Universidade Federal de Pernambuco, Departamento de Histologia e Embriologia, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50760-420 Recife, PE, Brazil.

Matrix metalloproteinases (MMP) have been identified as biomarkers for several diseases, including cancer. The increase in the expression of these enzymes has been related to greater tumor aggressiveness. MMP-26 is expressed constitutively in the endometrium and some cancer cells of epithelial origin.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Single-Cell Proteomics Uncovers Dual Traits of Dermal Sheath Cells in Wound Repair.

Adv Wound Care (New Rochelle)

January 2025

Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China.

Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the mouse model to explore DSC function across different healing stages.

View Article and Find Full Text PDF

Specific modulation of 28S_Um2402 rRNA 2'--ribose methylation as a novel epitranscriptomic marker of ZEB1-induced epithelial-mesenchymal transition in different mammary cell contexts.

NAR Cancer

March 2025

Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France.

The epithelial-mesenchymal transition (EMT) is a dynamic transdifferentiation of epithelial cells into mesenchymal cells. EMT programs exhibit great diversity, based primarily on the distinct impact of molecular activities of the EMT transcription factors. Using a panel of cancer cell lines and a series of 71 triple-negative primary breast tumors, we report that the EMT transcription factor ZEB1 modulates site-specific chemical modifications of ribosomal RNA (rRNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!