Vascular cell adhesion molecule-1 (VCAM1) is a member of the immunoglobulin (Ig) superfamily which interacts with the integrin very late antigen-4 (VLA4). The VCAM1/VLA4 interaction mediates both adhesion and signal transduction and is thought to play an important role in inflammatory and immune responses in vivo. The major form of human VCAM1 contains seven extracellular Ig-like domains, with domain 1 designated as the most N-terminal. We have examined the relationship between human VCAM1 structure and function using a combination of domain truncation mutants and proteolytic fragmentation of recombinant soluble VCAM1. We have characterized two regions of VCAM1, localized to domains 4 and 5, which are highly sensitive to proteolytic cleavage, localized the epitope of the blocking monoclonal antibody 4B9 to domain 1, and found that domains 1-3 are sufficient for both its adhesive function and its ability to initiate T cell activation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vascular cell
8
cell adhesion
8
adhesion molecule-1
8
human vcam1
8
vcam1
5
structure/function studies
4
studies vascular
4
molecule-1 vascular
4
molecule-1 vcam1
4
vcam1 member
4

Similar Publications

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data.

View Article and Find Full Text PDF

measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only.

View Article and Find Full Text PDF

Screening for pulmonary nodules (PN) using low-dose CT has proven effective in reducing lung cancer (LC) mortality. However, current treatments relying on follow-up and surgical excision fail to fully address clinical needs. Pathological angiogenesis plays a pivotal role in supplying oxygen necessary for the progression of PN to LC.

View Article and Find Full Text PDF

High Glucose Treatment Induces Nuclei Aggregation of Microvascular Endothelial Cells via the - Pathway.

Arterioscler Thromb Vasc Biol

January 2025

Research Center of Clinical Medicine, Affiliated Hospital, Nantong University, China. (X.W., D.L.).

Background: Hyperglycemia is a major contributor to endothelial dysfunction and blood vessel damage, leading to severe diabetic microvascular complications. Despite the growing body of research on the underlying mechanisms of endothelial cell (EC) dysfunction, the available drugs based on current knowledge fall short of effectively alleviating these complications. Therefore, our endeavor to explore novel insights into the cellular and molecular mechanisms of endothelial dysfunction is crucial for the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!