A general method is described for the electrophoretic transfer of proteins from stained gels to membranes and subsequent Western detection of specific proteins on the stained membranes. Proteins are separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, and the gels are stained using either of two different methods followed by electrophoretic transfer to nitrocellulose or Immobilon-P membranes. The transferred proteins remain stained during immunodetection, providing a set of background markers for protein location and size determination.
Download full-text PDF |
Source |
---|
Metallomics
January 2025
Department of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA.
We previously used high pressure liquid chromatography (HPLC) coupled with Se-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (ESI Orbitrap MS/MS) detection to study the increase in liver Se in turkeys and rats supplemented as selenite in high-Se (5 µg Se/g diet) and adequate-Se diets. We found that far more Se is present as selenosugar (seleno-N-acetyl galactosamine) than is present as selenocysteine (Sec) in true selenoproteins. In high-Se liver, the increase in liver Se was due to low molecular weight (LMW) selenometabolites as glutathione-, cysteine- and methyl-conjugates of the selenosugar, but also as high molecular weight (HMW) species as selenosugars decorating general proteins via mixed-disulfide bonds.
View Article and Find Full Text PDFTalanta
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China. Electronic address:
Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:
The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France.
Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China.
The protein carrier and encapsulation system based on polyelectrolytes plays crucial roles in drug research and development. Traditional methods such as isothermal titration calorimetry and molecular dynamics simulation have illuminated parts of this complex relationship. However, they fall short of capturing the full picture of the interaction during the carrier's fabrication and protein loading dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!