Binding of RNA by the alfalfa mosaic virus movement protein is biphasic.

FEBS Lett

Institut de Biologie Moléculaire des Plantes, Université Louis Pasteur, Strasbourg, France.

Published: August 1992

The movement protein of alfalfa mosaic virus was expressed in Escherichia coli and purified by cation exchange chromatography. The purified protein bound single-stranded RNA cooperatively in a biphasic manner. At protein saturation, RNA/protein complexes (designated 'primary complexes') were detected by a nitrocellulose-retention assay within 1 min of mixing, both at 4 and 22 degrees C. In contrast, an incubation of 30 min at 22 degrees C was necessary to obtain electrophoretically retarded complexes ('stabilized complexes'), containing a large number of protein molecules bound stably to each molecule of RNA. Stabilization did not take place at 4 degrees C. The rate of formation of the primary complexes was strongly dependent on protein concentration, and thus appeared limited by a bimolecular interaction. In contrast, the rate of stabilization was independent of protein concentration, suggesting that this process consisted of a rearrangement of the primary complexes without binding of additional protein molecules. In agreement with this suggestion, the amount of complexed RNA at equilibrium was the same when assayed by nitrocellulose retention and by electrophoretic retardation. The possibility that these peculiar kinetics could be caused by the presence of Tween 20 in the incubation media is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(92)81281-pDOI Listing

Publication Analysis

Top Keywords

alfalfa mosaic
8
mosaic virus
8
protein
8
movement protein
8
protein molecules
8
primary complexes
8
protein concentration
8
binding rna
4
rna alfalfa
4
virus movement
4

Similar Publications

Virus-induced gene silencing (VIGS) represents a particularly relevant tool in agricultural species for studying gene functionality. This study presents a novel approach for utilizing viruses belonging to the 30K family of movement proteins (MPs) as VIGS vectors. The method described here employs smaller inserts (54 bp or less) than those commonly used (100-500 bp).

View Article and Find Full Text PDF

Alfalfa (Medicago sativa L.) is a commonly grown forage crop in Oregon and California harvested on 350,000 and 480,000 acres, respectively, in 2023 (USDA-NASS 2023). Forage alfalfa is grown as a perennial crop for about four years in the same field and each season, the crop is cut 3-4 times for hay production.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how viral proteins, specifically movement proteins (MPs) of the 30K family, interact with host factors in plants, which is key to viral infection.
  • Researchers used the alfalfa mosaic virus (AMV) MP model, modifying its coding sequence with tags to successfully identify 121 potential host interactors.
  • Further analysis of selected candidates revealed that some of these interactors are part of protein complexes associated with AMV MP and that they also interact with other MPs in the 30K family, suggesting shared interactors among these viral proteins.
View Article and Find Full Text PDF

Antiviral properties and molecular docking studies of eco-friendly biosynthesized copper oxide nanoparticles against alfalfa mosaic virus.

BMC Plant Biol

November 2024

Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt.

Background: Nanotechnology has been recognized as a viable technology for enhancing agriculture, particularly in the plant pathogen management area. Alfalfa mosaic virus (AMV) is a global pathogen that affects many plant species, especially economically valuable crops. Currently, there is less data on the interaction of nanoparticles with phytopathogens, particularly viruses.

View Article and Find Full Text PDF

First detection of alfalfa mosaic virus in in Chile.

Plant Dis

November 2024

Pontificia Universidad Catolica de Chile, Departamento de Ciencias Vegetales, Facultad de Agronomía y Sistemas Naturales, Santiago, RM, Chile;

Article Synopsis
  • * In October 2022, symptoms of alfalfa mosaic virus (AMV) including yellow spots and leaf mottling were found in F. benjamina plants in Santiago, Chile, with only symptomatic plants testing positive for the virus.
  • * The presence of AMV was confirmed through enzyme-linked immunosorbent assay (ELISA) and reverse transcription PCR, with the virus identified as having 100% sequence identity to a previously reported AMV isolate, indicating it affects various ornamental plants and weeds.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!