The 16S rRNAs from nine rapidly growing Mycobacterium species were partially sequenced by using the dideoxynucleotide-terminated, primer extension method with cDNA generated by reverse transcriptase. The sequences were aligned with 47 16S rRNA or DNA sequences that represented 30 previously described and 5 undescribed species of the genus Mycobacterium, and a dendrogram was constructed by using equally weighted distance values. Our results confirmed the phylogenetic separation of the rapidly and slowly growing mycobacteria and showed that the majority of the slowly growing members of the genus represent the most recently evolved organisms. The 24 strains which represented 21 rapidly growing species constituted several sublines, which were defined by the following taxa: (i) Mycobacterium neoaurum and M. diernhoferi, (ii) M. gadium, (iii) the M. chubuense cluster, (iv) the M. fortuitum cluster, (v) M. kommossense, (vi) M. sphagni, (vii) M. fallax and M. chitae, (viii) M. aurum and M. vaccae, (ix) the M. flavescens cluster, and (x) M. chelonae subsp. abscessus. Our phylogenetic analysis confirmed the validity of the phenotypically defined species mentioned above, but our conclusions disagree with most of the conclusions about intrageneric relationships derived from numerical phenetic analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00207713-42-3-337 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!