Previously we identified a novel 6.5 kb mRNA transcribed from the Duchenne muscular dystrophy (DMD) gene. This mRNA differs in coding content and tissue distribution from the known muscle type and brain type 14 kb DMD mRNAs which code for dystrophin. The novel transcript shares with dystrophin most of the sequence coding for the cysteine-rich and C-terminal domains. Here we used cDNA cloning to identify the divergence point between the common region and the sequence unique to the novel mRNA at the 5' end of the sequence encoding the cysteine-rich domain of dystrophin. This unique sequence containing the translation initiation site is located in a new exon in the intron between exons 62 and 63 of the dystrophin gene. Using probes containing RNA sequences specific to the novel mRNA, we investigated the expression of this mRNA in various tissues and cell types. The study reveals that this mRNA is the main DMD gene product detectable in a variety of nonmuscle tissues including brain cells. The amount of this mRNA in some tissues is comparable to the amount of dystrophin mRNA in the muscle. The expression of the 6.5 kb mRNA is down-regulated during differentiation of myogenic cells; it is present in small amounts in proliferating myoblasts but is undetected in differentiated muscle cultures depleted of mononucleated cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-0436.1992.tb00666.xDOI Listing

Publication Analysis

Top Keywords

novel mrna
12
mrna
9
duchenne muscular
8
muscular dystrophy
8
dmd gene
8
expression mrna
8
mrna tissues
8
novel
5
dystrophin
5
characterization cell
4

Similar Publications

CircPRKD3-loaded exosomes concomitantly elicit tumor growth inhibition and glioblastoma microenvironment remodeling via inhibiting STAT3 signaling.

Neuro Oncol

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.

View Article and Find Full Text PDF

The role of N-methyladenosine (mA) mRNA modifications in herpesvirus infections.

J Virol

January 2025

Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Herpesviruses, a family of large enveloped DNA viruses, establish persistent infections in a wide range of hosts. This characteristic requires an intricate network of interactions with their hosts and host cells. In recent years, the interplay between herpesviruses and the epitranscriptome-chemical modifications in transcripts that may affect mRNA biology and fate-has emerged as a novel aspect of herpesvirus-host interactions.

View Article and Find Full Text PDF

Synapse dysfunction is an early event in Alzheimer's disease (AD) caused by various factors such as Amyloid beta, p-tau, inflammation, and aging. However, the exact molecular mechanism of synapse dysfunction in AD is largely unknown. To understand this, we comprehensively analyzed the synaptosome fraction in postmortem brain samples from AD patients and cognitively normal individuals.

View Article and Find Full Text PDF

Unlabelled: Once considered rare in eukaryotes, polycistronic mRNA expression has been identified in kinetoplastids and, more recently, green algae, red algae, and certain fungi. This study provides comprehensive evidence supporting the existence of polycistronic mRNA expression in the apicomplexan parasite . Leveraging long-read RNA-seq data from different parasite strains and using multiple long-read technologies, we demonstrate the existence of defined polycistronic transcripts containing 2-4 protein encoding genes, several validated with RT-PCR.

View Article and Find Full Text PDF

Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.

Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!