Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJM196107202650301DOI Listing

Publication Analysis

Top Keywords

losses physiologic
4
physiologic requirements
4
requirements water
4
water electrolytes
4
electrolytes extensive
4
extensive burns
4
burns children
4
losses
1
requirements
1
water
1

Similar Publications

Identification, molecular characterization and expression patterns of Cathepsin L in Yesso scallop (Patinopecten yessoensis) shell-infested by Polydora.

Comp Biochem Physiol B Biochem Mol Biol

January 2025

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.

Patinopecten yessoensis (Yesso scallop), one of the most important aquaculture molluscs in China, has recently suffered severe Polydora disease, causing economic losses. Cathepsin L (CatL), a cysteine protease, has important functions in immune responses in vertebrates and invertebrates. However, little is known regarding the structure and function of CatL in scallops.

View Article and Find Full Text PDF

Development of morphology-dependent nanoselenium carriers for enhancing biological activity and reducing plant stress.

Ecotoxicol Environ Saf

January 2025

Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China. Electronic address:

Owing to their small size, morphology and release modification properties, nanopesticides are considered promising alternative strategies for enhancing biological activity and minimizing pesticide losses. In this study, we used a colloidal self-assembly method to develop a morphology-stable, regularly rod-shaped nanoselenium pesticide carrier (NSer), which was further modified with chitosan. After loading penthiopyrad (PEN), the biological activity of NSer@PEN and its impact on the physiological and biochemical processes of plants were further compared with those of spherical nanoselenium pesticides (NSes@PEN) and commercial materials (20 % PEN SC).

View Article and Find Full Text PDF

Can spatial self-organization inhibit evolutionary adaptation?

J R Soc Interface

January 2025

The Swiss Institute for Dryland Environmental and Energy Research, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.

Plants often respond to drier climates by slow evolutionary adaptations from fast-growing to stress-tolerant species. These evolutionary adaptations increase the plants' resilience to droughts but involve productivity losses that bear on agriculture and food security. Plants also respond by spatial self-organization, through fast vegetation patterning involving differential plant mortality and increased water availability to the surviving plants.

View Article and Find Full Text PDF

Bird mites are parasites that feed on both wild and domesticated bird species, causing severe degradation in avian welfare. The chicken mite, in particular, is a widespread ectoparasite in poultry, responsible for several challenges faced by the poultry industry, including poor animal health, which causes significant economic losses. This review, based on our current knowledge, aims to provide a comprehensive insight into the biology and distribution of these mites, as well as their impact on poultry health and production.

View Article and Find Full Text PDF

This study explored the thermal response of , an injurious insect pest present in many countries worldwide, at different controlled conditions. This species is responsible for several economic losses in soft fruit cultivations, develops on ripening fruits, and has the capability to quickly adapt to new territories and climates, closing multiple generations per year. Given its high invasive potential and the increasing need for low-impact control strategies, an in-depth exploration of the biology of this species and of the stage thermal response is fundamental.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!