Mono- and disynaptic pathways from Forel's field H to dorsal neck motoneurones in the cat.

Exp Brain Res

Department of Neurophysiology, Faculty of Medicine, University of Tokyo, Japan.

Published: June 1992

1. We analysed the synaptic actions produced by Forel's field H (FFH) neurones on dorsal neck motoneurones and the pathways mediating the effects. 2. Stimulation of ipsilateral FFH induced negative field potentials of several hundred microvolts with the latency of about 1.1 ms in the medial ponto-medullary reticular formation, being largest in the ventral part of the nucleus reticularis pontis caudalis (NRPC), and in the dorsal part of the nucleus reticularis gigantocellularis (NRG). 3. Stimulation of ipsilateral FFH induced excitatory postsynaptic potentials (EPSPs) in 90% (47/52) and inhibitory postsynaptic potentials (IPSPs) in 19% (10/52) of the reticulospinal neurones (RSNs) in the NRPC and the NRG. Latencies of the EPSPs and IPSPs were 0.7-3.0 ms, the majority of which were in the monosynaptic range. The monosynaptic connexions were confirmed by spike triggered averaging technique both in excitatory (n = 4) and inhibitory (n = 2) pathways. 4. Single stimulation of FFH induced EPSPs at the segmental latencies of 0.3-1.0 ms in neck motoneurones, which were clearly in the monosynaptic range. Repetitive stimulation of FFH produced marked temporal facilitation of EPSPs in neck motoneurones. The facilitated components of the EPSPs had a little longer latencies and their amplitude reached several times as large as that evoked by single stimulation in all the tested motoneurones. These facilitated excitations are assumed to be mediated by RSNs in the NRPC and NRG, since RSNs were mono- and polysynaptically fired by stimulation of FFH and they were previously shown to directly project to neck motoneurones. 5. EPSPs were induced in 91% (82/91) of motoneurones supplying m. biventer cervicis and complexus (BCC; head elevator), 10% (3/29) of motoneurones supplying m. splenius (SPL; lateral head flexor). Likewise, stimulation of FFH produced EMG responses in BCC muscles, while not in SPL muscle. Thus FFH neurones produce excitations preferentially in BCC motoneurones. 6. Systematic tracking in and around FFH revealed that the effective sites for evoking above effects were in FFH and extended caudally along their efferent axonal course. 7. These results suggested that FFH neurones connect with neck motoneurones (chiefly BCC, head elevator) mono-, di- and/or polysynaptically and are mainly concerned with the control of vertical head movements.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00228187DOI Listing

Publication Analysis

Top Keywords

neck motoneurones
24
stimulation ffh
16
ffh neurones
12
ffh induced
12
ffh
11
motoneurones
10
forel's field
8
dorsal neck
8
stimulation ipsilateral
8
ipsilateral ffh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!