Download full-text PDF

Source
http://dx.doi.org/10.1080/00039896.1961.10662906DOI Listing

Publication Analysis

Top Keywords

biotransformation benzidines
4
benzidines iii
4
iii studies
4
studies diorthotolidine
4
diorthotolidine dianisidine
4
dianisidine dichloro-benzidine
4
dichloro-benzidine disubstituted
4
disubstituted congeners
4
congeners benzidine
4
benzidine 4'-diaminobiphenyl
4

Similar Publications

Enzyme cascade nanozyme based colorimetric sensor for detection of uric acid as a biomarker of hyperuricemia.

Mikrochim Acta

January 2025

Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.

A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for  detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.

View Article and Find Full Text PDF

Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.

View Article and Find Full Text PDF

Pt@ZnCoO Microspheres as Peroxidase Mimics: Enhanced Catalytic Activity and Application for L-Cysteine Detection.

Molecules

January 2025

Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.

Compared to natural enzymes, the development of efficient artificial simulated enzymes, such as those based on bimetallic materials with high catalytic activity and good stability, is an important way until now. Herein, we employed ZnCoO microspheres as carriers to synthesize Pt-doped composites with different amounts using a one-pot method. The morphology and structure of the synthesized materials were characterized using XRD, SEM, BET, FT-IR, XPS, and Zeta potential techniques.

View Article and Find Full Text PDF

Sensitive and selective colorimetric detection of thiophanate-methyl based on a novel Ru-FeO nanozyme with enhanced peroxidase-like activity.

Mikrochim Acta

January 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.

A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!