Download full-text PDF |
Source |
---|
J Plast Surg Hand Surg
January 2025
Department of Hand Surgery, Huashan Hospital Fudan University Shanghai, China; Department of Hand and Upper Extremity Surgery, Shanghai Jing'an District Central Hospital, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hand Reconstruction, Fudan University, Shanghai, China.
Introduction: This study presents an innovative arthroscopy-assisted total wrist arthrodesis technique utilising three hollow screws, aimed at improving clinical outcomes for patients with severe wrist arthritis.
Materials And Methods: The technique involved the placement of three hollow screws to facilitate wrist bone fusion. Between August 2019 and August 2023, four patients diagnosed with severe wrist arthritis underwent the arthroscopy-assisted procedure.
Innovation (Camb)
January 2025
International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
Heterogeneous catalysis at the metal surface generally involves the transport of molecules through the interfacial water layer to access the surface, which is a rate-determining step at the nanoscale. In this study, taking the oxygen reduction reaction on a metal electrode in aqueous solution as an example, using accurate molecular dynamic simulations, we propose a novel long-range regulation strategy in which midinfrared stimulation (MIRS) with a frequency of approximately 1,000 cm is applied to nonthermally induce the structural transition of interfacial water from an ordered to disordered state, facilitating the access of oxygen molecules to metal surfaces at room temperature and increasing the oxygen reduction activity 50-fold. Impressively, the theoretical prediction is confirmed by the experimental observation of a significant discharge voltage increase in zinc-air batteries under MIRS.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, National Synchrotron Radiation Laboratory, Center for Micro and Nanoscale Research and Fabrication, Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230026, P. R. China.
Breaking the thermal, mechanical and lightweight performance limit of aerogels has pivotal significance on thermal protection, new energy utilization, high-temperature catalysis, structural engineering, and physics, but is severely limited by the serious discrete characteristics between grain boundary and nano-units interfaces. Herein, a thermodynamically driven surface reaction and confined crystallization process is reported to synthesize a centimeter-scale supercontinuous ZrO nanolayer on ZrO-SiO fiber aerogel surface, which significantly improved its thermal and mechanical properties with density almost unchanged (≈26 mg cm). Systematic structure analysis confirms that the supercontinuous layer achieves a close connection between grains and fibers through Zr─O─Si bonds.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
Traditional energy-integration X-ray imaging systems rely on total X-ray intensity for image contrast, ignoring energy-specific information. Recently developed multilayer stacked scintillators have enabled multispectral, large-area flat-panel X-ray imaging (FPXI), enhancing material discrimination capabilities. However, increased layering can lead to mutual excitation, which may affect the accurate discrimination of X-ray energy.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
NHC Key Laboratory of Pneumoconiosis, Taiyuan, China.
Background: Many respiratory diseases such as pneumoconiosis require to close monitor the symptoms such as abnormal respiration and cough. This study introduces an automated, nonintrusive method for detecting cough events in clinical settings using a flexible chest patch with tri-axial acceleration sensors.
Methods: Twenty-five young healthy persons (hereinafter referred to as healthy adults) and twenty-five clinically diagnosed pneumoconiosis patients (hereinafter referred to as patients) participated in the experiment by wearing a flexible chest patch with an embedded ACC sensor.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!