An anti-peptide antibody raised to the C-terminal sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) was used to examine CFTR immunoreactivity in the T84 colonocyte cell line. Immunoblots of T84 cell lysates detected CFTR as a 170-kDa protein that appeared as a broad band or doublet in SDS/PAGE. This protein comigrated with the predominant immunoblot signal detected in human pancreas and colon. An equivalent protein was detected as a prominent substrate for protein kinase A and for protein kinase C in T84 cell immunoprecipitates with this antibody. The immunoprecipitated protein resembled the protein detected by immunoblot in that both proteins showed the same change in electrophoretic mobility after digestion by N-Glycanase. The precipitated protein was indentified as CFTR by two criteria. First, the same protein was immunoprecipitated with an antibody to a different CFTR peptide, [Lys102]CFTR-(102-116). Second, two-dimensional phosphopeptide mapping was used to compare the immunoprecipitated protein with a bacterially expressed protein known to contain most of the predicted protein kinase A phosphorylation sites in CFTR. Because the six most prominent peptides in each map were equivalent, these maps confirm that the precipitated protein is CFTR. By using these antibodies for immunofluorescence and immunoperoxidase staining, CFTR was localized to the apical region of T84 cells grown in tumors and in monolayers. Thus, T84 cells express CFTR at sufficient levels to permit identification and immunochemical studies of this protein in its endogenously occurring form.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC48653 | PMC |
http://dx.doi.org/10.1073/pnas.89.6.2340 | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFInt Urol Nephrol
January 2025
Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.
Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.
Discov Oncol
January 2025
Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFOrv Hetil
January 2025
1 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Klinikai Központ, Aneszteziológiai és Intenzív Terápiás Intézet Pécs, Ifjúság u. 13., 7624 Magyarország.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!