There is an extensive literature documenting the increased or deregulated expression of the c-myc oncogene in human malignancies. The authors have recently devised a sensitive immunocytochemical method for studying the tissue localization of c-myc protein in tissue sections of human colon. We have compared nuclear c-myc staining using a polyclonal rabbit anti-c-myc antibody and a mouse monoclonal myc antibody NCM II 274. Microscopic observation of the tissue specific pattern of c-myc protein distribution shows that nuclear staining intensity varies in normal and neoplastic crypt cell nuclei in parallel with morphologic criteria of neoplasia. These studies yield further information on the usefulness of c-myc protein as a prognostic indicator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1886156 | PMC |
Front Genet
January 2025
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
Objectives: This study aimed to investigate the impact of low-intensity pulsed ultrasound (LIPUS) treatment on the miRNA and mRNA profiles of stem cell-derived extracellular vesicles (EVs). Specifically, it sought to identify key miRNAs and their target mRNAs associated with enhanced therapeutic efficacy in LIPUS-treated stem cell-derived EVs.
Methods: Utilizing miRNA deep-sequencing data from the Gene Expression Omnibus database, differential gene analysis was performed.
J Cancer Res Clin Oncol
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.
View Article and Find Full Text PDFTranscription
January 2025
Department of Chemistry, University of Toronto, Mississauga, ON, Canada.
Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance.
View Article and Find Full Text PDFInvest New Drugs
January 2025
UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
Background: Since MYC is one of the most frequently altered driver genes involved in cancer formation, it is a potential target for new anti-cancer therapies. Historically, however, MYC has proved difficult to target due to the absence of a suitable crevice for binding potential low molecular weight drugs.
Objective: The aim of this study was to evaluate a novel molecular glue, dubbed GT19630, which degrades both MYC and GSPT1, for the treatment of breast cancer.
Genes Chromosomes Cancer
January 2025
Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, presenting with heterogeneous clinical and molecular subtypes. While gene fusions are predominantly associated with alveolar RMS, spindle cell RMS, especially congenital and intraosseous variants, are also linked to specific gene fusions. Furthermore, recently, FGFR1 kinase-driven RMSs were published.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!