The rate of Cl- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl- conductance decreases the capability to secrete Cl-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl- secretion and apical membrane Cl- permeability. Single-channel studies in excised membrane patches revealed that ATP increased the open probability of outward rectifying Cl- channels. The latter effect occurs through a receptor mechanism that requires no identified soluble second messengers and is insensitive to probes of G protein function. These results demonstrate a mode of regulation of anion channels by binding ATP at the extracellular surface. Regulation of Cl- conductance by external ATP is preserved in cystic fibrosis airway epithelia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC48504PMC
http://dx.doi.org/10.1073/pnas.89.5.1621DOI Listing

Publication Analysis

Top Keywords

regulation cl-
12
cystic fibrosis
12
fibrosis airway
12
cl- conductance
12
airway epithelia
12
cl- channels
8
cl-
8
cl- secretion
8
human airway
8
membrane cl-
8

Similar Publications

Carvacrol: Innovative Synthesis Pathways and Overview of its Patented Applications.

Recent Pat Biotechnol

January 2025

Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), P.O. Box 592 Mghila, Beni Mellal 23000, Morocco.

Aim: This research concerns the patentability of carvacrol; it could be helpful for researchers to easily identify any innovation in the biotechnological application of this monoterpene as well as other similar compounds.

Background: Like thyme or oregano, several plants in the Lamiaceae family produce carvacrol. It is one of the secondary metabolites with several biological activities, including the improvement in plants' resistance and their protection.

View Article and Find Full Text PDF

Background: Infancy regulatory problems (RP) of sleep, feeding and eating, and excessive crying are thought to play a key role in the development of psychopathology in childhood, but knowledge of the early trajectories is limited.

Objective: To explore RP at ages 8-11 months and the associations with mental health problems at 1½ years, and assess the influences of maternal mental health problems and relationship problems.

Methods: RP was explored in a nested in-cohort sample ( = 416) drawn from a community-based cohort ( = 2,973).

View Article and Find Full Text PDF

Evolutionary diversification and succession of soil huge phages in glacier foreland.

Microbiome

January 2025

Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.

Background: Huge phages (genome size ≥ 200 kb) have been detected in diverse habitats worldwide, infecting a variety of prokaryotes. However, their evolution and adaptation strategy in soils remain poorly understood due to the scarcity of soil-derived genomes.

Results: Here, we conduct a size-fractioned (< 0.

View Article and Find Full Text PDF

Multiplexed assays of variant effect (MAVEs) are a critical tool for researchers and clinicians to understand genetic variants. Here we describe the 2024 update to MaveDB ( https://www.mavedb.

View Article and Find Full Text PDF

Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!