Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.1961.tb31099.xDOI Listing

Publication Analysis

Top Keywords

genetic errors
4
errors metabolism
4
metabolism environmental
4
environmental interaction
4
interaction synthesis
4
genetic
1
metabolism
1
environmental
1
interaction
1
synthesis
1

Similar Publications

This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency.

View Article and Find Full Text PDF

X-linked severe combined immunodeficiency disease (X-SCID) is a form of inborn errors of immunity (IEI) associated with causal DNA variants of the gene. Patients with X-SCID are characterized by a combination of cellular and humoral immunodeficiencies associated with increased susceptibility to infections. The presented cases constituted two unrelated male patients from the Slovak population.

View Article and Find Full Text PDF

The identification and typing of bacteria are very expensive and time-consuming due to their growth times, and the expertise needed. MALDI-TOF MS represents a fast technique, reproducible with molecular approaches. This technique is still poorly applied in Legionella surveillance with estimation occurring only at the genus level.

View Article and Find Full Text PDF

Enhancing single-cell transcriptomics using interposed anchor oligonucleotide sequences.

Commun Biol

January 2025

Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK.

Single-cell transcriptomics, which utilises barcodes and unique molecular identifiers (UMIs) for polyA+ mRNA capture, is compromised by oligonucleotide synthesis errors. To address this, we modified the oligonucleotide capture design and integrated an interposed anchor between the barcode and the UMI. This design significantly reduces the need to discard reads due to synthesis inaccuracies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!