Import of cytochrome c heme lyase into mitochondria: a novel pathway into the intermembrane space.

EMBO J

Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie, Universität München, Germany.

Published: February 1992

Cytochrome c heme lyase (CCHL) catalyses the covalent attachment of the heme group to apocytochrome c during its import into mitochondria. The enzyme is membrane-associated and is located within the intermembrane space. The precursor of CCHL synthesized in vitro was efficiently translocated into isolated mitochondria from Neurospora crassa. The imported CCHL, like the native protein, was correctly localized to the intermembrane space, where it was membrane-bound. As with the majority of mitochondrial precursor proteins, CCHL uses the MOM19-GIP receptor complex in the outer membrane for import. In contrast to proteins taking the general import route, CCHL was imported independently of both ATP-hydrolysis and an electrochemical potential as external energy sources. CCHL which lacks a cleavable signal sequence apparently does not traverse the inner membrane to reach the intermembrane space; rather, it translocates through the outer membrane only. Thus, CCHL represents an example of a novel, 'non-conservative' import pathway into the intermembrane space, thereby also showing that the import apparatus in the outer membrane acts separately from the import machinery in the inner membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC556474PMC
http://dx.doi.org/10.1002/j.1460-2075.1992.tb05074.xDOI Listing

Publication Analysis

Top Keywords

intermembrane space
20
outer membrane
12
cytochrome heme
8
heme lyase
8
pathway intermembrane
8
inner membrane
8
import
7
cchl
7
intermembrane
5
space
5

Similar Publications

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.

View Article and Find Full Text PDF

Chemical mitochondrial uncouplers are protonophoric, lipophilic small molecules that transport protons from the mitochondrial intermembrane space into the matrix independent of ATP synthase, thus uncoupling nutrient oxidation from ATP production. Our previous work identified BAM15 (IC 0.27 μM) as a potent and efficacious mitochondrial uncoupler with potential for obesity treatment.

View Article and Find Full Text PDF

Targeting signals required for protein sorting to sub-chloroplast compartments.

Plant Cell Rep

December 2024

Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea.

Chloroplasts, distinctive subcellular organelles found exclusively in plant species, contain three membranes: the outer, inner, and thylakoid membranes. They also have three soluble compartments: the intermembrane space, stroma, and thylakoid lumen. Accordingly, delicate sorting mechanisms are required to ensure proper protein targeting to these sub-chloroplast compartments.

View Article and Find Full Text PDF

METTL4-Mediated Mitochondrial DNA N6-Methyldeoxyadenosine Promoting Macrophage Inflammation and Atherosclerosis.

Circulation

December 2024

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, China. (L.Z., X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.).

Background: Mitochondrial dysfunction is a key factor in the development of atherogenesis. METTL4 (methyltransferase-like protein 4) mediates N6- methyldeoxyadenosine (6mA) of mammalian mitochondrial DNA (mtDNA). However, the role of METTL4-mediated mitoepigenetic regulation in atherosclerosis is still unknown.

View Article and Find Full Text PDF
Article Synopsis
  • - p66Shc is an adaptor protein crucial for regulating cellular functions including signaling pathways, mitochondrial activity, and the production of reactive oxygen species (ROS), with its location shifting to mitochondria under oxidative stress.
  • - The protein is also implicated in mitochondria-associated membranes (MAM), which play a role in key cellular processes like calcium balance, apoptosis (cell death), and autophagy (cell cleaning), suggesting p66Shc's involvement in determining cell fate.
  • - This study investigates the distribution of p66Shc in different parts of mouse liver tissue and HepG2 cells, demonstrating a significant presence of p66Shc in MAM under both normal and oxidative stress conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!