Chemoattractants, used at concentrations to invoke optimal neutrophil chemotaxis, induce rapid changes in neutrophils such as a transient increase in intracellular Ca2+ ([Ca2+]i). We have previously observed that neutrophils adhering to cytokine-activated endothelial cells (EC) also respond with a rapid rise in [Ca2+]i caused by an endothelial membrane-bound form of platelet-activating factor. After preloading with the intracellular Ca(2+)-chelator bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA/AM), neutrophils were no longer able to respond with a rapid rise in [Ca2+]i toward the chemoattractant FMLP or to rIL-1 beta-pretreated EC. These neutrophils were still able to adhere and migrate under the conditions tested. The only difference was that the BAPTA/AM-treated neutrophils migrated a little slower than untreated control neutrophils. This discrepancy was not observed at later time points. The BAPTA/AM-preloaded neutrophils did not differ from unloaded neutrophils in actin polymerization responses. Whereas untreated neutrophils demonstrated an up-regulation of the specific granule markers CD11b, CD45, and CD67 during migration (without any release from the azurophil granules), the BAPTA/AM pretreatment completely prevented this process. The BAPTA/AM-preloaded neutrophils did not release vitamin B12-binding protein from the specific granules upon treatment with FMLP. The down-modulation of the selectin member LAM-1, as seen upon neutrophil activation, was not affected by BAPTA/AM pretreatment of the neutrophils. Thus, neither the rapid rise in [Ca2+]i nor specific granule fusion with the plasma membrane constitute a prerequisite for neutrophil migration across resting or cytokine-activated EC.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!