The relative sensitivity of two insect cell lines to laminar shear stress was determined, and the protective effect of polymers added to the growth media of two insect cell lines, Trichoplusia ni (TN-368) and Spodoptera frugiperda (SF-9), was evaluated. TN-368 and SF-9 cells were found to be equally sensitive to laminar shear stress. Methylcellulose [0.5% (w/v) Dow E4M Methocel] and dextran [4.5% (w/v)] increased the resistance of suspended cells to lysis due to laminar shear stress by factors of up to 76 and 28, respectively, compared to cells in media without additives. It was observed that the protective effect of Pluronic F-68 was concentration-dependent: 0.2% and 0.3% (w/v) F-68 increased the resistance of SF-9 cells to shear stress by factors of 15 and 42, respectively. However, increasing the concentration to 0.5% did not significantly increase the cells' resistance compared to 0.3% (w/v). F-68 at 0.2% only increased the resistance of TN-368 cells by a factor of 6. It is believed that the protection is a result of the polymer adsorbing to the cell membrane. None of the polymer additives tested had a significant effect on SF-9 or TN-368 growth rate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bp00005a011DOI Listing

Publication Analysis

Top Keywords

shear stress
20
laminar shear
16
increased resistance
12
insect cell
8
cell lines
8
sf-9 cells
8
stress factors
8
03% w/v
8
w/v f-68
8
cells
6

Similar Publications

As humans age, they experience deformity and a decrease in their bone strength, such brittleness in the bones ultimately lead to bone fracture. Magnetic field exposure combined with physical exercise may be useful in mitigating age-related bone loss by improving the canalicular fluid motion within the bone's lacuno-canalicular system (LCS). Nevertheless, an adequate amount of fluid induced shear stress is necessary for the bone mechano-transduction and solute transport in the case of brittle bone diseases.

View Article and Find Full Text PDF

Transrectal shear wave elastography (T-SWE) can be used non-invasively to diagnose prostate cancer (PCa) and benign prostatic hyperplasia (BPH). The prostate tissue can be viewed as an ellipsoidal sphere with viscoelastic characterization. Linear elastic model has been used to characterize soft tissues, and the simplification of partial characterization provides incomplete information.

View Article and Find Full Text PDF

Muscarinic acetylcholine receptor 3 localized to primary endothelial cilia regulates blood pressure and cognition.

Sci Rep

January 2025

Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.

We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.

View Article and Find Full Text PDF

The therapeutic agent-based self-assembled hydrogel is gaining interest for biomedical applications, because it overcomes the poor biodegradability and low therapeutic agent loading of conventional polymer gelator-based hydrogel. Here, we present rhein lysinate (RHL), a therapeutic agent that self-assembles to form a stable hydrogel through the π-π stacking and hydrogen bonding interactions, while also exerting anti-neuroinflammatory effect. As a small molecular hydrogelator, RHL has significantly improved water solubility and enhanced self-assembly and gelation capabilities compared to the natural anthraquinone rhein.

View Article and Find Full Text PDF

Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!