Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe an organotypic model of human skin comprised of a stratified layer of human epidermal keratinocytes and dermal fibroblasts within a contracted collagen lattice. Feasible and reproducible production of the skin construct has required the use of traditional as well as specialized culture techniques. The configuration of the construct has been engineered to maintain polarity and permit extended culture at the air-liquid interface. Morphological, biochemical and kinetic parameters were assessed and functional assays were performed to determine the degree of similarity to human skin. Light and ultrastructural morphology of the epidermis closely resembled human skin. The immunocytochemical localization of a number of differentiation markers and extracellular matrix proteins was also similar to human skin. Kinetic data showed a transition of the epidermal layer to a more in vivo-like growth rate during the development of the construct at the air-liquid interface. The barrier properties of the construct also increased with time reaching a permeability to water of less than 2%-h after approximately 2 weeks at the air-liquid interface which is still on average 30-fold more water-permeable than normal human skin. The construct is currently used for in vitro research and testing and is also being tested in clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02521744 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!