The sweet protein monellin consists of two noncovalently associated polypeptide chains, the A chain of 44 amino acid residues and the B chain of 50 residues. Synthetic monellin is 4000 times as sweet as sucrose on a weight basis, and the native conformation is essential for the sweet taste. Knowledge of the active site of monellin will provide important information on the mode of interaction between sweeteners and their receptors. If the replacement of a certain amino acid residue in monellin removes the sweet taste, while the native conformation is retained, it may be concluded that the position replaced is the active site. Our previous replacement studies on Asp residues in the A chain did not remove the sweet taste. The B chain contains two Asp residues at positions 7 and 21, which were replaced by Asn. [AsnB21]Monellin and [AsnB7]monellin were 7000 and 20 times sweeter than sucrose, respectively. The low potency of the [AsnB7]monellin indicates that AspB7 participates in binding with the receptor. AspB7 was then replaced by Abu. [AbuB7]Monellin was devoid of sweetness, and retained the native conformation. AspB7 is located at the surface of the molecule (Ogata et al.). These results suggest that Asp7 in the B chain is the highly probable active site of monellin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.56.1937 | DOI Listing |
Parasite Epidemiol Control
February 2025
Parasites and Vector Biology Research Unit (PAVBRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
Background: Parasitic infections are known to suppress the cell mediated immunity that protects against tuberculosis. The status of parasitic infections among bacteriologically confirmed tuberculosis patients and their household contacts in Cameroon is not well established. This study aimed at reporting the status of parasitic infections in TB patients and their household contacts with keen interest in associated risk factors to disease exposure.
View Article and Find Full Text PDFBackground: Studies across multiple addictions have suggested that repetitive transcranial magnetic stimulation (rTMS) applied to the left dorsolateral prefrontal cortex (L-DLPFC) reduces cue-induced-craving (CIC), however there are no studies in treatment seeking participants with cannabis use disorder (CUD). In this secondary analysis of a previously completed trial, we explore whether a multi-session course of rTMS reduces CIC in CUD.
Methods: Seventy-one participants with ≥moderate CUD (age=30.
RSC Adv
January 2025
Department of Chemistry, Manipal University Jaipur VPO-Dehmi-Kalan, Off Jaipur Ajmer Express Way Jaipur Rajasthan 303007 India
Triazole, a nitrogen-containing five-membered heterocycle with two isomeric forms, 1,2,3-triazole and 1,2,4-triazole, has proven to be a valuable component in the pharmaceutical domain. Owing to its widespread utility in drug development, pharmaceutical and medicinal chemistry, several synthetic methods have been explored, such as different catalytic systems, solvents, and heating methodologies in recent years. However, some methods were associated with several limitations, such as harsh reaction conditions, high temperatures, low atom economy, and long reaction times.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography.
View Article and Find Full Text PDFACS Omega
January 2025
Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, P.R. China.
The main protease (M) is a pivotal target in the life cycle of feline coronavirus (FCoV), which causes a high mortality feline disease, feline infectious peritonitis (FIP). Virtual screening was performed against the feline coronavirus M to find active compounds with low toxicity from a library of natural products. Eighty-six compounds were selected by using the rank of docking score and binding pose analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!